Abstract:
A method for reporting channel information in a wireless local area network system is provided. The method includes receiving a data block for requesting a modulation and coding scheme (MCS) feedback from a requesting station, the data block including a data field and a stream indicator indicating a number of at least one spatial stream in the data field; determining, the MCS feedback based on the data block; and, transmitting the MCS feedback to the requesting station, the MCS feedback including a recommended MCS and a recommended stream indicator indicating a number of at least one recommended spatial stream. The number of the at least one recommended spatial stream in the MCS feedback is equal or less than the number of the at least one spatial stream in the data block.
Abstract:
A method of transmitting data in a wireless local area network is provided. The method includes the steps of: generating a data unit including a MAC (Medium Access Control) header and MSDU (MAC Service Data Unit), generating an encoded data unit by encoding the data unit, generating one or more spatial blocks by dividing the encoded data unit, dividing each of the one or more spatial block into a first block and a second block, generating a first interleaved block and a second interleaved block by interleaving the first block and the second block respectively, generating a first mapped sequence by mapping the first interleaved block into signal constellation, generating a second mapped sequence by mapping the second interleaved block into signal constellation, generating the transmission signal by performing IDFT (Inverse Discrete Fourier Transform) to the first mapped sequence and the second mapped sequence; and transmitting the transmission signal.
Abstract:
A method and an apparatus for providing channel quality information in a wireless communication system are disclosed. According to one embodiment of the invention, a method for transmitting channel quality information includes receiving a downlink signal, calculating a channel quality information index for the received downlink signal at least based on a number of resource elements for a physical downlink shared channel (PDSCH), wherein the number of resource elements for the PDSCH is determined at least based on an overhead of a demodulation reference signal (DMRS), and transmitting the calculated channel quality information index.
Abstract:
A channel sounding method in a wireless local area network (WLAN) system is provided. The method, performed by a transmitter, includes transmitting a null data packet announcement (NDPA) frame to a receiver to initiate a channel sounding procedure; transmitting a null data packet (NDP) to the receiver and receiving a feedback frame. The feedback frame includes a plurality of segment frames and a channel feedback report. The channel feedback report is split into a plurality of feedback segments. Each of the plurality of feedback segments is respectively included in each of the plurality of segment frames. The each of the plurality of segment frames includes a first-segment subfield indicating whether the each of the plurality of feedback segment included is a first segment and a remaining-segment subfield indicating the number of remaining feedback segments.
Abstract:
Disclosed are a method and apparatus for transmitting a reference signal. In a base station apparatus for transmitting a reference signal in a wireless communication system, a processor generates the same scrambling sequence for resource elements (REs) allocated to each layer for reference signal transmission, and spreads or covers Walsh codes such that scrambling sequences generated for the resource elements can be orthogonal to each other on a time axis, in order to generate a reference signal sequence. Here, the Walsh code spreading or covering by the processor is applied on a frequency axis on the basis of a plurality of resource blocks (RBs) or on the basis of a pair of resource blocks, such that mutually different sequences having mutually different sequence values can be mapped between resource blocks or between pairs of resource blocks. A transmission module transmits the reference signal, to which the thus-generated reference signal sequence is applied, to user equipment via each layer.
Abstract:
An apparatus and method for generating a codebook in a wireless communication system are disclosed. The codebook generation method includes determining one or more dominant singular vectors in a channel matrix for antennas and setting each of the dominant singular vectors as a random non-zero vector, generating a first codebook having codewords, a minimum distance between the code-words being maximized, using the random non-zero vector in a region that includes unit norm vectors each having a Euclidean distance to each of the dominant singular vectors, equal to or less than a predetermined value, generating a second codebook corresponding to a unitary matrix that rotates the random non-zero vector toward the dominant singular vectors, and generating a final codebook using the first and second codebooks.
Abstract:
A method for transmitting an ACK/NACK signal and a method for establishing the signal transmission are disclosed. A system for the method determines whether the ACK/NACK signal is repeatedly transmitted or not according to channel environments of a user, and transmits the ACK/NACK signal according to the determined result within a single TTI. Areas unused for transmitting the ACK/NACK signal are allocated for data, resulting in an increased reception reliability of the ACK/NACK signal.
Abstract:
This document is related to a wireless communication system, and more particularly to a method and an apparatus for transmitting encoded signals with frequency hopping environment. A method of transmitting signals by a user equipment (UE) comprises: encoding an input signal having a length of (A) bits by using (A) basis sequences having a length of 20 bits to output an encoded signal having a length of 20 bits, wherein (A) is a natural number less than 14; mapping the encoded signal having the length of 20 bits to two different resource regions, wherein the first 10 bits of the encoded signal are mapped to a first resource region, and the second 10 bits of the encoded signal are mapped to a second resource region; and transmitting the resource-mapped signals to a Node B, wherein the encoded signal or the (A) basis sequences are cyclic shifted with a value of (x) before mapping the encoded signal to the two different resource regions, wherein (x) is a natural number less than 20.
Abstract:
The present application discloses a method for transmitting a downlink signal in a multi-antenna wireless communication system. In detail, the method comprises: a step of mapping a signal of a codeword domain to a signal of a layer domain; a step of mapping the signal of the layer domain to a signal of a virtual antenna port domain using a precoding matrix; and a step of transmitting the signal of the virtual antenna port domain to a physical antenna port, wherein the precoding matrix is changed in a channel measurement unit, and the signal of the layer domain is layer-permutated in the channel measurement unit. Preferably, the channel measurement unit is constituted by one or more resource blocks (RBs).
Abstract:
A method of allocating resources for transmitting a signal in a Multiple-Input Multiple-Output (MIMO) wireless communication system is disclosed. The method includes allocating one or more spatial resources of a plurality of spatial resources corresponding to first Single Carrier-Frequency Division Multiple Access (SC-FDMA) symbols to a first transport block, allocating one or more other spatial resources of the plurality of spatial resources corresponding to the first SC-FDMA symbols to a second transport block, and allocating spatial resources corresponding to second SC-FDMA symbols to the first transport block and the second transport block.