摘要:
A method is disclosed for forming a split-gate flash memory cell where the floating gate of the cell is self-aligned to isolation, to source and to word line. This multi-self-aligned structure, which provides the maximum shrinkage of the cell that is possible, is also disclosed. The multi-self-alignment is accomplished by first defining the floating gate at the same time the trench isolation is formed, and then self-aligning the source to the floating gate by using a nitride layer as a hard mask in place of the traditional polyoxide, and finally forming a polysilicon spacer to align the word line to the floating gate. Furthermore, a thin floating gate is used to form a thin and sharp poly tip through the use of a “smiling effect” to advantage. The tip substantially decreases the coupling ratio of the floating gate to the word line for fast erasing speed, while at the same time increasing the coupling of the source to the floating gate with the attendant increase in the programming speed of the split gate flash memory cell.
摘要:
A method is disclosed to form a split-gate flash memory cell having nitride spacers formed on a pad oxide and prior the forming of an inter-poly oxide layer thereover. In this manner, any damage that would normally occur to the inter-poly oxide during the etching of the nitride spacers subsequent to the forming of the inter-poly oxide is avoided. Consequently, the variation in the thickness of the inter-poly oxide due to the unpredictable damage to the underlying spacers is also avoided by reversing the order in which the spacers and the inter-poly oxide are formed, including the forming of the pad oxide first. As a result, variation in the erase speed of the inter-gate flash memory cell is prevented, both for cells fabricated on the same wafer as well as on different wafers on same or different production lines.
摘要:
A method is provided to form a sharp poly tip to improve the speed of a split-gate flash memory. The sharp poly tip is provided in place of the conventional gate bird's beak (GBB) because the latter requires the forming of thick poly-oxide which is more and more difficult in the miniaturized circuits of the ultra scale integrated technology. Furthermore, it is well known that GBB encroaches under the gate edge in a split-gate flash and degrades the programmability of submicron memory cells. The sharp poly tip of the invention is provided by forming a tapered floating gate through a high pressure etch such that the tip of the upper edge of the floating gate under the poly oxide is sharper and more robust, and, therefore, less susceptible to damage during the manufacture of the cell. The invention is also directed to a semiconductor device fabricated by the disclosed method.
摘要:
A process for integrating the fabrication of a flash memory cell, on a first region of a semiconductor substrate, with the fabrication of salicided peripheral devices, on a second region of the semiconductor substrate, has been developed. The flash memory cell features SAC contact structures, located between stacked gate structures, contacting underlying source/drain regions. The stack gate structures are comprised of a polycide control gate shape, on a dielectric layer, overlying a polysilicon floating gate shape. The performance of the peripheral devices are increased via use of metal silicide layers, located on the top surface of a polysilicon gate structure, as well as on the adjacent heavily doped source/drain regions.
摘要:
A split gate P-channel flash memory cell and method of forming a split gate P-channel flash memory cell which avoids of high erasing voltage, reverse tunneling during programming, drain disturb and over erase problems, and permits shrinking the cell dimensions. The control gate has a concave top surface which intersects with the sidewalls to form a sharp edge. The cell is programmed by charging the floating gate with electrons by means of hot electron injection from the channel into the floating gate. The cell is erased by discharging the excess electrons from the floating gate into the control gate using Fowler-Nordheim tunneling. The sharp edge at the intersection of the concave top surface and the sidewalls of the floating gate produces a high electric field between the control gate and the floating gate to accomplish the Fowler-Nordheim tunneling with only moderate voltage differences between the floating gate and control gate. The P-channel flash memory cell has a higher impact ionization rage for creating hot electrons so that the distance between the source and drain junctions and the length of the floating gate can be kept small thereby permitting the dimensions of the flash memory cell to be shrunk.
摘要:
A method of forming a vertical transistor memory device includes the following steps. Before forming the trenches, FOX regions are formed between the rows. Form a set of trenches with sidewalls and a bottom in a semiconductor substrate with threshold implant regions the sidewalls. Form doped drain regions near the surface of the substrate and doped source regions in the base of the device below the trenches with oppositely doped channel regions therebetween. Form a tunnel oxide layer over the substrate including the trenches. Form a blanket thick floating gate layer of doped polysilicon over the tunnel oxide layer filling the trenches and extending above the trenches. Etch the floating gate layer down below the top of the trenches. Form an interelectrode dielectric layer composed of ONO over the floating gate layer and over the tunnel oxide layer. Form a blanket thick control gate layer of doped polysilicon over the interelectrode dielectric layer. Pattern the control gate layer into control gate electrodes. Form spacers adjacent to the sidewalls of the control gate electrode.
摘要:
A combined method of fabricating embedded flash memory cells having salicide and self-aligned contact (SAC) structures is disclosed. The SAC structure of the cell region and the salicide contacts of the peripheral region of the semiconductor device are formed using a single mask. This is accomplished by a judicious sequence of formation and removal of the various layers including the doped first and second polysilicon layers in the memory cell and of the intrinsic polysilicon layer used in the peripheral circuits. Thus, the etching of the self-aligned contact hole of the memory cell is accomplished at the same time the salicided contact hole of the peripheral region is formed. Furthermore, the thin and thick portions of the dual-gate oxide of the two regions are formed as a natural part of the total process without having to resort to photoresist masking of one portion of the gate oxide layer with the attendant contamination problems while removing the portion of the gate oxide in the other region of the substrate.
摘要:
A flash EEPROM or split gate flash EEPROM is made on a doped silicon semiconductor N-well formed in a doped semiconductor substrate. A channel with a given width is formed in the N-well which is covered with a tunnel oxide layer, and an N+ doped polysilicon floating gate electrode layer, which can be patterned into a split gate floating gate electrode having a narrower width than the channel width. An interelectrode dielectric layer is formed over the floating gate electrode and the exposed tunnel oxide. A control gate electrode includes a layer composed of P+ doped polysilicon over the interelectrode dielectric layer. The tunnel oxide layer, the floating gate electrode layer, the interelectrode dielectric layer, and the control gate electrode are patterned into a gate electrode stack above the channel. A source region and a drain region are formed in the surface of the substrate with a P type of dopant, the source region and the drain region being self-aligned with the gate electrode stack.
摘要:
A method is provided for forming a split-gate flash memory cell having reduced size, increased capacitive coupling and improved data retention capability. A split-gate cell is also provided with appropriate gate oxide thicknesses between the substrate and the floating gate and between the floating gate and the control gate along with an extra thin nitride layer formed judiciously over the primary gate oxide layer in order to overcome the problems of low data retention capacity of the floating gate and the reduced capacitive coupling between the floating gate and the source of prior art.
摘要:
An ensemble of test structures comprising arrays of polysilicon plate MOS capacitors for the measurement of electrical quality of the MOSFET gate insulation is described. The test structures also measure plasma damage to these gate insulators incurred during metal etching and plasma ashing of photoresist. The structures are formed, either on test wafers or in designated areas of wafers containing integrated circuit chips. One of the test structures is designed primarily to minimize plasma damage so that oxide quality, and defect densities may be measured unhampered by interface traps created by plasma exposure. Other structures provide different antenna-to-oxide area ratios, useful for assessing plasma induced oxide damage and breakdown. The current-voltage characteristics of the MOS capacitors are measured by probing the structures on the wafer, thereby providing timely process monitoring capability.