Abstract:
A printer control device includes a joining unit, a transmission unit, and a control unit. The joining unit causes at least one network printer to join a predetermined multicast address. The transmission unit converts print data into packets and multicast transmits the packets to the predetermined multicast address. The control unit monitors transmission/reception status of the packets at the at least one network printer that has joined the multicast address. Based on monitoring results the control unit controls transmission of packets to, waiting for packets from, and retransmission of packets to the predetermined multicast address.
Abstract:
A management device is connected to image formation devices, each having at least one network interface, via a network. Embodiments include a presence check request transmitting unit which transmits presence check requests to the network interfaces of the image formation devices via the network; an identification information receiving unit which receives response information returned from the network interfaces in response to the presence check requests; a combined identification information equivalence judgment unit which makes a judgment on equivalence of multiple pieces of combined identification information when multiple pieces of combined identification information (each generated by combining multiple pieces of identification information assigned to two or more network interfaces) are received from two or more network interfaces as the response information; and a management unit which manages network interfaces whose combined identification information is judged to be equivalent, as network interfaces belonging to the same image formation device.
Abstract:
An exposure apparatus includes a movable stage, a chuck device which is arranged on the stage and holds a substrate, a first gas supply device for supplying a gas to a position of the substrate to be exposed, and a plurality of divided planar members which are arranged adjacent to a periphery of the substrate such that at least a part of the divided planar members covers a position measurement mirror of the movable stage, and are flush with or substantially flush with a surface of the substrate or a substrate holding surface of the chuck device.
Abstract:
A scanning exposure apparatus for exposing a substrate with a pattern formed on an original while scanning the original and the substrate. The apparatus includes a chuck for holding a substrate, a stage for moving the chuck to align the substrate, a mechanism for purging an exposure optical path near the stage with inert gas, the mechanism having a cover covering the exposure optical path between a substrate-side lower end of an optical system and a vicinity of the stage, and a supply port for supplying inert gas into the cover, and a top plate which is mounted on the stage and has a surface substantially flush with a surface of the substrate. The top plate is arranged to form a gap between the top plate and a side surface of the substrate, a depth of the gap is not less than a width of the gap, and a dimension from the side surface of the substrate to an outer edge of the top plate is larger than that of a substrate-side opening of the cover in a scanning direction.
Abstract:
A wireless communication apparatus may operate selectively as a master station or as a remote station in a wireless network. When the apparatus operates as the master station, the apparatus may manage one or more remote devices that operate as remote stations. The apparatus continues operating as the master station until a continuation period elapses when the number of remote devices to be managed is zero. The continuation period begins when the number of remote devices becomes zero. If the number of remote devices becomes one or more before the continuation period elapses, the apparatus continues operating as the master station, even after a lapse of the continuation period. If the number of remote devices remains zero until the continuation period elapses, the apparatus stops operating as the master station after the lapse of the continuation period.
Abstract:
A controlling device may acquire setting information regarding a wireless setting for a wireless communication currently being set in a wireless communication device. The controlling device may determine, using the setting information, whether the wireless setting indicates a first authentication method in which an authentication is performed by an authentication server or a second authentication method in which an authentication is performed by a device with which the wireless communication performing unit performs a wireless communication directly. The controlling device may provide a first screen to a displaying unit in a first case where a determination is made that the wireless setting indicates the first authentication method. The controlling device may provide a second screen which is different from the first screen to the displaying unit in a second case where a determination is made that the wireless setting indicates the second authentication method.
Abstract:
A wireless communication apparatus may operate selectively as a master station or as a remote station in a wireless network. When the apparatus operates as the master station, the apparatus may manage one or more remote devices that operate as remote stations. The apparatus continues operating as the master station until a continuation period elapses when the number of remote devices to be managed is zero. The continuation period begins when the number of remote devices becomes zero. If the number of remote devices becomes one or more before the continuation period elapses, the apparatus continues operating as the master station, even after a lapse of the continuation period. If the number of remote devices remains zero until the continuation period elapses, the apparatus stops operating as the master station after the lapse of the continuation period.
Abstract:
There is provided a wireless communication system including a first wireless communication apparatus and a second wireless communication apparatus. In a specific case, the first wireless communication apparatus changes a state from a first state of being a master station of a first wireless network to a second state of being a slave station of a second wireless network in which the second wireless communication apparatus is a master station, and transmits target data to the second wireless communication apparatus using the second wireless network in which the first wireless communication apparatus is the slave station and the second wireless communication apparatus is the master station. The second wireless communication apparatus receives the target data from the first wireless communication apparatus using the second wireless network.
Abstract:
A wireless communication device communicable with a first type and a second type of networks based on a first type and a second type wireless setting data respectively, includes: an obtaining section obtaining an identifier of an access point when a detection section detects the disconnection with the second type network through a certain access point; and a trial section trying to connect with the second type network through the certain access point if at least one second type wireless setting data stored in the second storage includes the obtained identifier, and the trial section trying to connect with the first type network through the certain access point any of the second type wireless setting data stored in the second storage does not includes the obtained identifier but the first type wireless setting data stored in the first storage includes the obtained identifier.
Abstract:
A wireless communication apparatus may operate selectively as a master station or as a remote station in a wireless network. When the apparatus operates as the master station, the apparatus may manage one or more remote devices that operate as remote stations. The apparatus continues operating as the master station until a continuation period elapses when the number of remote devices to be managed is zero. The continuation period begins when the number of remote devices becomes zero. If the number of remote devices becomes one or more before the continuation period elapses, the apparatus continues operating as the master station, even after a lapse of the continuation period. If the number of remote devices remains zero until the continuation period elapses, the apparatus stops operating as the master station after the lapse of the continuation period.