摘要:
A quantization step determination part inputs an evaluation value (ACT_MB) indicating the dispersion in a macroblock and its average value (ACT_PIC). A subtracter obtains the difference between these values, and a multiplier multiplies the difference by raq ( 1) to obtain a converted quantization step value (Qstep_AVC). This optimizes a bit allocation in accordance with an Activity value of the macroblock, to thereby improve the quality of image.
摘要:
A pixel signal of Bayer pattern output from an imaging device is subjected to interpolation in a pixel interpolation circuit, and converted into a YCbCr signal in a color space conversion circuit. A chroma value calculation circuit calculates a chroma value based on the pixel signal output from the imaging device. A look-up table converts the chroma value into a suppression signal. More specifically, when the chroma value is lower than a threshold value, the look-up table outputs a value lower than 1 as the suppression signal. The suppression signal is corrected in another look-up table, and then, works on Cr and Cb signals in multipliers. A signal in a low-chroma region is thereby suppressed.
摘要:
A first pixel group containing a pixel of interest, a second pixel group containing the first pixel group, and a third pixel group containing the second pixel group are defined. A first reference pixel value is calculated based on the first pixel group, and a second reference pixel value is calculated based on the third pixel group. The second pixel group is divided into two sub-groups with respect to the second reference pixel value. The sub-group containing the pixel of interest is selected as a target set. In the target set, a pixel with a pixel value close to the first reference pixel value is selected as a corrective pixel. The pixel value of the pixel of interest is replaced with the pixel value of the corrective pixel.
摘要:
A resolution converting method, device, and computer-readable recording medium that can improve the quality of a resolution-converted image. The invention converts resolution based on a model generated through statistical processing of multiple images by preparing multiple models having different resolutions, receiving an input image, projecting the input image onto a model to obtain characteristic parameters of the input image, and generating an image by applying the obtained characteristic parameters to a model. Using the characteristic parameters thereby obtained, an image is generated using a model different from the model used to obtain the characteristic parameters. Consequently, the invention is capable of improving the quality of the resolution-converted image.
摘要:
An image processor includes an encoder that performs encoding including quantization on an image signal and a controller that controls a quantization parameter for quantization. The controller determines a quantization parameter of a currently target macroblock as an increase or decrease from a reference value, and determines the increase or decrease based on a difference between a target amount of code for a predetermined number of macroblocks fewer than a total number of macroblocks within one frame and a generated amount of code of the predetermined number of macroblocks processed immediately before. The controller can further determine the increase or decrease, based on pixel information of the currently target macroblock such as an activity evaluation value.
摘要:
An apparatus and method to detect a line segment or arc using Hough transform. A Hough transform unit performs contour extraction on brightness image data to generate contour image data, with pixels having a pixel value of 0 to 255, performs the Hough transform on points in the contour image data, and counts additional values represented by pixel values of points in the contour image data in a Hough table. The Hough transform unit performs contour extraction on first to third component data to generate first to third contour data with pixels having a pixel value of 0 to 255, performs the Hough transform on points in the first to third contour data, and counts additional values represented by pixel values of points in the first to third contour data in the Hough table. The detection unit comprehensively evaluates the counts to detect a line segment or arc.
摘要:
It's an object of the invention to provide an object detection device capable of detecting an object for detection in an input image with high precision. In an object detection device 1, a detection window setting unit 11 receives a photographic image 21 photographed by a camera. The detection window setting unit 11 sets a detection window area in the photographic image 21 and generates a normal window image 22 by cutting out the detection window area from the photographic image 21. An image processing unit 12 performs image processing such as enlargement and reduction, etc. on the photographic image 21. Each modified window images 23 is cut out from each of the enlarged photographic image 21 and the reduced photographic image 21. A degree calculation unit 13 calculates matching rates indicating a possibility the object for detection in the window image for each window images on the basis of feature data 51 indicating a feature of the object for detection. A determination unit 14 determines whether or not the detection object is present in the detection window area on the basis of the matching rates of each window image.
摘要:
It is an object of the present invention to provide an image coding technique for suppressing degradation in image quality, in which the time and space where intra macroblocks appear are dispersed. A numerical value (Ftk) is generated from the lower-order six bits of the frame number (Ft) of a coding object frame. A numerical value (Fs) is generated by shifting the numerical value (Ftk) leftward by two bits. An exclusive OR of the numerical value (Ftk) and the numerical value (Fs) is calculated, to thereby generate a numerical value (A). A numerical value (Ytk) is generated from the lower-order six bits of the Y coordinate (Yt) of a coding object macroblock. The upper-order bits of the numerical value (Ytk) and the lower-order bits thereof are inverted, to thereby generate a numerical value (Yr). Further, an exclusive OR of the numerical value (Yr) and the numerical value (A) is calculated, to thereby generate a numerical value (B). A numerical value (Xtk) is generated from the lower-order six bits of the X coordinate (Xt) of the coding object macroblock. When the numerical value (Xtk) and the numerical value (B) are identical to each other, the coding object macroblock is intra-coded.
摘要:
A technique for suppressing a significant variation of a quantization step value and enabling a stable rate control to be performed. A function is used for calculating a quantization step conversion factor from a bit rate ratio is a straight line with an inclination of −1, intersecting a function at a reference point. The function is a monotone decreasing exponential function. A reference bit rate ratio (R0) is expressed as R0=T/S by using a total bit rate (S) of a first stream and a total target bit rate (T) of a second stream. The function appropriately represents a relation between the bit rate ratio and the quantization step conversion factor in coding conversion but has a large rate of variation in an area where the bit rate ratio is about 0.5. The function has a small rate of variation and can suppress a significant variation of the quantization step conversion value.
摘要翻译:一种用于抑制量化步长值的显着变化并实现稳定速率控制的技术。 使用函数来计算比特率的量化步长转换因子是与参考点的函数相交的具有-1的倾斜度的直线。 该函数是单调递减指数函数。 通过使用第一流的总比特率(S)和第二流的总目标比特率(T)将参考比特率比(R0)表示为R0 = T / S。 该功能适当地表示编码转换中的比特率比与量化级转换因子之间的关系,但是在比特率为约0.5的区域中具有较大的变化率。 该功能具有较小的变化率,并且可以抑制量化步长转换值的显着变化。
摘要:
A correlation value calculation circuit calculates respective correlation values of each pixel for color image or for gray image in four directions. A selection circuit determines respective correlation values (Cv, Ch, CdA and CdB) in the four directions on the basis of a chroma evaluation value. A first correlation judgment circuit determines a correlation direction of a specified pixel from the correlation values (Cv, Ch, CdA and CdB). A first interpolation circuit performs color interpolation on the basis of the determined correlation direction. A color-interpolated image is enlarged by an enlargement circuit. A correlation direction interpolation circuit performs enlargement and interpolation of the correlation direction determined by the first correlation judgment circuit. A filter performs a filtering process for each of pixels of the enlarged image by using the interpolated correlation direction for enlargement.