Abstract:
A light generating device includes a body having discharge spaces generating light in response to a voltage signal, and electrodes providing the voltage signal to the discharge spaces. The discharge spaces are apart from each other and arranged substantially parallel with each other. The electrodes are disposed at external portions of the body. The body includes a first substrate, and a second substrate disposed on the first substrate. The second substrate includes space forming members and space dividing members. The discharge spaces are each formed between corresponding one of the space forming members and the first substrate. The space dividing members are each disposed between the adjacent space forming members. The space dividing members include connecting passages each connecting adjacent ones of the discharge spaces. A display device includes a display panel for displaying images using an image signal, a driving signal and light, the planar light generating device for providing the light to the display panel, and an inverter for generating the voltage signal to the planar light generating device.
Abstract:
A planar light source device includes a body, a plurality of partition members, and first and second electrodes. The body includes a discharge space. The partition member divides the discharge space into a plurality of discharge regions. The first electrodes are disposed at the edge portions of the body, and a discharge voltage is applied to the first electrodes. The second electrode is disposed between the partition members. Therefore, the second electrode corresponding to the discharge region prevents deflection to enhance optical characteristics of the planar light source device. Furthermore, the second electrode lowers a discharge start time and reduces a discharging time.
Abstract:
A planar light source device includes a light source body having at least one partition member in a space formed by first and second substrates, and at least one plasma container. Plasma is generated in a plurality of discharge regions that are connected to one another through the plasma container. The plasma container is disposed at a position adjacent to the partition member to receive a portion of the plasma. According to this configuration, distribution of the plasma in the discharge regions is uniform and luminance of the light generated from the planar light source device is uniform. As a result, the planar light source device implements a good display quality of the LCD apparatus.
Abstract:
An optical tape cassette and a player for using the cassette. The optical tape cassette includes a drum on which optical tape is wound and two tape reels for supplying and winding the tape. The cassette player includes a driver having two rotating members which can be connected to the drum and tape take-up reel for driving the drum and tape take-up reel, respectively, and an optical pickup for projecting a light beam onto the optical tape which is wound about the periphery of the drum, thereby realizing a simplified structure and easy handling for home use.
Abstract:
A liquid crystal display is provided that includes: a first display panel including a thin film transistor and a plurality of pixel electrodes; a second display panel facing the first display panel with a cell gap therebetween; a lower resistive layer disposed on the first display panel; an upper resistive layer disposed on the second display panel; and a sensing spacer connecting the lower resistive layer and the upper resistive layer.
Abstract:
In a backlight unit and an LCD apparatus having the backlight unit, in which the backlight unit includes a plurality of lamps and an inverter, the inverter provides the lamps with current. The inverter reduces current provided to the lamps to turn off the lamps. Therefore, currents are gradually decreased to reduce noise generated by the transformer when the lamps are turned off.
Abstract:
A liquid crystal display apparatus includes a backlight assembly which includes a device for driving the backlight including a light emitting diode (“LED”) used as a light source, which has a high efficiency and a high reliability for controlling brightness of each color light. The driving device drives a first, second and third LED unit emitting a first, second and third light, respectively. The driving device includes a first driving part emitting the first light in response to a brightness control signal and outputting a reference control signal in response to a first brightness of the first light, a second driving part driving the second LED units generating the second light of which second brightness is controlled in response to the reference control signal, and a third driving part driving the third LED units generating the third light of which third brightness is controlled in response to the reference control signal.
Abstract:
A lamp socket includes a socket housing and a plurality of power supply members. The socket housing has a plurality of connecting holes extended in a vertical direction. The power supply members are disposed in the connecting holes, respectively, and each of the power supply members includes a plurality of lamp connecting parts and an inverter connecting part. The lamp connecting parts are protruded from an upper surface of the socket housing and include first and second portions facing each other. The inverter connecting part is integrally formed with the lamp connecting parts, and is protruded from a lower surface of the socket housing.
Abstract:
A light source device includes a light source module having a light-emitting block, an image analysis part, a duty ratio calculation part, a duty ratio determination part and a signal generation part. The image analysis part extracts representative luminance data of the light-emitting block based on pixel data. The duty ratio calculation part calculates duty ratio data of the light-emitting block based on the representative luminance data. The duty ratio determination part generates determined duty ratio data of the light-emitting block based on the duty ratio data from a first period, and the signal generation part generates a driving signal having a duty ratio corresponding to the determined duty ratio data to drive the light-emitting block.
Abstract:
In a backlight unit and an LCD apparatus having the backlight unit, in which the backlight unit includes a plurality of lamps and an inverter, the inverter provides the lamps with current. The inverter reduces current provided to the lamps to turn off the lamps. Therefore, currents are gradually decreased to reduce noise generated by the transformer when the lamps are turned off.