Abstract:
The present invention relates to a method of manufacturing a semiconductor memory device and a semiconductor memory device manufactured using the same. A method of manufacturing a semiconductor device comprises defining source/drain regions in semiconductor substrate through an etch process using a mask, and forming a gate and source/drain by depositing a conductive material over the defined regions and the semiconductor substrate and patterning the conductive material.
Abstract:
Provided are a thimble-type intermediation device and a method for recognizing a finger gesture using the same. The thimble-type intermediation device includes: a motion sensing unit sensing a motion of a user's finger and generating the sensed result as motion data; a tactile sensing block sensing a tactile behavior of the user's finger and generating the sensed result as tactile data; a control unit recognizing the gesture and tactile behavior of the user's finger on the basis of the generated motion data and tactile data, and outputting the recognition result as recognition result information; and a wireless communication unit transmitting the recognition result information to a robot system.
Abstract:
In a method for motion estimation using adaptive patterns in a video sequence compression system, an initial search pattern located at a center of a search window in a block of a video frame is determined. A location of a minimum block distortion measure (BDM) is searched in the initial search pattern. A horizontal search pattern for functioning on the search window is determined in the horizontal direction to search a location of a minimum BDM in the horizontal search pattern. A vertical search pattern for operating on the search window is determined in the vertical direction to search a location of a minimum BDM in the vertical search pattern. The location of the minimum BDM in each pattern is designated to be a motion vector. A search pattern to be used in a subsequent searching stage is determined based on the location of the minimum BDM in each pattern.
Abstract:
In realizing a user recognition system and a method thereof, a user feature vector is extracted from an input facial image, and at least one cluster is generated and a user feature template is enrolled. The cluster includes the feature vector as a member of it. When a user facial image is inputted, a user feature vector is extracted from the image, and a similarity between the feature vector and the user feature template is calculated. When the similarity is greater than a predetermined threshold value, a user of the user feature template is recognized as the user of the input image.
Abstract:
A target detecting system and method for detecting a target from an input image is provided. According to the target detecting system and method, when a target is detected from an input image and there are moving areas in the input image, camera movement parameters are obtained, image frames are transformed, and movement candidate areas are extracted from the image frame and the previous input image frame. In addition, image feature information is extracted from the input image, and based on the movement candidate areas and the image feature information a shape of the target is extracted. Therefore, the target can be exactly and rapidly extracted and tracked.
Abstract:
Provided are a human recognition apparatus and a human recognition method identifying a user based on a walking pattern. The human recognition apparatus includes a detecting unit detecting a vibration according to a user's walking, and outputting an electric signal, a pattern calculating unit acquiring a walker's walking pattern from the electric signal, and a user determining unit comparing the walking pattern with a previously measured reference data by user and identifying the user based on the comparison result. The human recognition apparatus and the human recognition method are robust against peripheral noise and can increase an acceptance rate through a simple structure and procedure by using the waling pattern, which is one-dimensional time information requiring no vast data throughput, as the user identification data.
Abstract:
The present invention relates to a method of manufacturing a semiconductor memory device and a semiconductor memory device manufactured using the same. A method of manufacturing a semiconductor device comprises defining source/drain regions in semiconductor substrate through an etch process using a mask, and forming a gate and source/drain by depositing a conductive material over the defined regions and the semiconductor substrate and patterning the conductive material.
Abstract:
A hydrogenated copolymer-containing laminate comprising a substrate layer, an adhesive layer, and a hydrogenated copolymer composition layer which is laminated on and bonded to the substrate layer through the adhesive layer, the hydrogenated copolymer composition layer comprising a hydrogenated copolymer (I), and a rubbery polymer (II), wherein the hydrogenated copolymer (I) is obtained by hydrogenating a conjugated diene/vinyl aromatic compound copolymer, the hydrogenated copolymer (I) having the following characteristics (1) to (4): (1) a vinyl aromatic monomer unit content of from more than 50% by weight to 90% by weight, (2) a content of a vinyl aromatic polymer block of not more than 40% by weight, (3) a weight average molecular weight of from 50,000 to 1,000,000, and (4) a hydrogenation ratio of 70% or more, as measured with respect to the double bonds in conjugated diene monomer units.
Abstract:
A gesture spotting detection method and apparatus employ a shoulder-line algorithm. The shoulder-line detecting method recognizes a GSD calling gesture that occurs in a shoulder-line, head or higher part in a remote distance or a short distance, although a user does not have a fixed posture. In the method, an image of people is received, and skin information of a person in the image is detected to detect a face area. Then, the cloth color information of the person is modeled from the inputted image to detect a cloth area. An external space is defined from the image based on the body space area, and an edge is extracted from the image based on the body space and the external space. Then, shoulder-line information is acquired based on an energy function obtained based on the body space, the external space, and the edge.
Abstract:
An etchant for removing an indium oxide layer includes sulfuric acid as a main oxidizer, an auxiliary oxidizer such as H3PO4, HNO3, CH3COOH, HClO4, H2O2, and a Compound A that is obtained by mixing potassium peroxymonosulfate (2KHSO5), potassium bisulfate (KHSO4), and potassium sulfate (K2SO4) together in the ratio of 5:3:2, an etching inhibitor comprising an ammonium-based material, and water. The etchant may remove desired portions of the indium oxide layer without damage to a photoresist pattern or layers underlying the indium oxide layer.
Abstract translation:用于除去氧化铟层的蚀刻剂包括硫酸作为主要氧化剂,辅助氧化剂如H 3 PO 4,HNO 3, CH 3 COOH,HClO 4,H 2 O 2,以及通过将钾 过硫酸氢盐(2KHSO 5),硫酸氢钾(KHSO 4)和硫酸钾(K 2 SO 4) 一起以5:3:2的比例,包含铵基材料的蚀刻抑制剂和水。 蚀刻剂可以去除铟氧化物层的期望部分,而不损害光致抗蚀剂图案或氧化铟层下面的层。