Abstract:
A solar energy conversion assembly for efficiently capturing solar energy by providing additional chances to absorb reflected sunlight and providing longer path lengths in the photovoltaic (PV) material. The assembly includes a PV device including a layer of PV material and a protective top covering the PV material (e.g., a planar glass cover applied with adhesive to the PV material). The assembly further includes a PV enhancement film formed of a substantially transparent material, and film is applied to at least a portion of the protective top such as with a substantially transparent adhesive. The PV enhancement film includes a plurality of absorption enhancement structures on the substrate opposite the PV device. Each absorption enhancement structure includes a light receiving surface that refracts incident light striking the PV enhancement film to provide an average path length ratio of greater than about 1.20 in the layer of PV material.
Abstract:
A method for manufacturing a photovoltaic (PV) enhancement film. The method includes providing an extrusion device with an embossing roller engraved to have a pattern corresponding to a set of absorption enhancement structures. The method includes feeding a web of substantially transparent material, such as an UV-stabilized blend of polycarbonate or acrylic. The method includes rolling the embossing roller against a first side of the web to form the absorption enhancement structures. The absorption enhancement structures each include a light receiving surface that directs at least a portion of light that passes through a second side of the web toward the first side back toward the second side (e.g., the structures may be configured to provide total internal reflection when applied to a PV device). The structures refract incident light to provide an average path length ratio of greater than about 1.10 in the PV device.
Abstract:
A solar power system for supplying concentrated solar energy. The system includes a cylindrical absorber tube carrying the working fluid and a concentrator assembly, which includes an array of linear lenses such as Fresnel lenses. The concentrator assembly includes a planar optical wafer paired with each of the linear lenses to direct light, which the lenses focus on a first edge of the wafers, onto the collector via a second or output edge of the wafers. Each of the optical wafers is formed from a light transmissive material and acts as a light “pipe.” The lens array is spaced apart a distance from the first edges of the optical wafers. This distance or lens array height is periodically adjusted to account for seasonal changes in the Sun's position, such that the focal point of each linear lens remains upon the first edge of one of the optical wafers yearlong.
Abstract:
A method for fabricating a device for displaying an interlaced image. The method includes providing a film of transparent material and creating a lens array in the film by forming parallel lens sets on a first side of the film, and then bonding an interlaced image including sets of elongate image elements to a second side of the film. Each of the lens sets is configured with lenses for focusing light from one of the image elements in a particular paired set of image elements rather than all the elements as with lenticular material. The bonding of the interlaced image to the film may include printing the interlaced image directly onto the second side with the printing facilitated by the small lens array thickness. Lens array creating includes embossing the lens sets into the film with a flat die or cylinder/roller engraved with a reverse image of the lens array.
Abstract:
An image display system for displaying interlaced images to achieve three dimensional effects. The system includes a user electronic device, such as a computer or television, with a display with a faceplate. The electronic device operates the display to generate an image that includes an interlaced portion at an inner display surface or location at an internal offset distance from an outer surface of the faceplate. The image display system includes a lens array with lenticules configured to focus through the lens array material, through an air gap, and into the faceplate the internal offset distance rather than simply on the back of the lens array. The display system may also include a mounting mechanism for selectively positioning the lens array relative to the faceplate to adjust the size of the air gap so as to focus the lens array onto the image being displayed within the display device.
Abstract:
A reflective imaging assembly for viewing an interlaced image to provide a three dimensional or animated visual display. The assembly includes an image element having segments or strips of an interlaced image and includes a reflective substrate including reflectors or mirror elements each having an elongate reflective surface and extending parallel to the segments of the interlaced image. The reflectors focus on the interlaced image to illuminate the segments with reflected light to produce a visual display or effect. Each of the reflectors may have a parabolic cross section to focus reflected light rays onto the segments. A mounting substrate of transparent material is positioned between the image element and the reflective substrate. The mounting substrate abuts the reflectors and provides a planar surface spaced apart from the grooves upon which the image element is provided. Illumination spaces are provided in the image element to facilitate light reaching the reflectors.
Abstract:
A method for fabricating a device for displaying an interlaced image. The method includes providing a film of transparent material and creating a lens array in the film by forming parallel lens sets on a first side of the film, and then bonding an interlaced image including sets of elongate image elements to a second side of the film. Each of the lens sets is configured with lenses for focusing light from one of the image elements in a particular paired set of image elements rather than all the elements as with lenticular material. The bonding of the interlaced image to the film may include printing the interlaced image directly onto the second side with the printing facilitated by the small lens array thickness. Lens array creating includes embossing the lens sets into the film with a flat die or cylinder/roller engraved with a reverse image of the lens array.
Abstract:
A plastic product formed from a method of fabricating plastic objects having an insert of lenticular lens material integrally bonded or otherwise attached therein. In one embodiment, the method is used to fabricate a container, such as a conical cup, by first manufacturing or providing a sheet of lenticular material comprising layers of lens material and optical ridges and grooves and an ink layer printed on the flat side of the lens material. To protect the ink from the heat of molten or moldable plastic during later plastic processing, a thermally protective substrate is attached or bonded to the ink layer by using adhesives to attach a plastic substrate or by coating the ink with coating materials that thermally protect the ink from high temperatures. In one embodiment, the protective substrate is applied in a two step process of first placing a plastic hot melt onto a polyester or other material release liner and, after cooling of the hot melt, using heat and pressure to laminate or bond the hot melt plastic to the ink and then removing the liner. Lenticular inserts are cut out of the lenticular material sheets and the inserts are positioned within a mold where the container is formed by injection, blow, or other molding process. In this step, the substrate acts as a bonding surface as it contacts the molten plastic, melts, and then cools forming a bonding interface with the plastic used to form the container.
Abstract:
A reflective imaging assembly for viewing an interlaced image to provide a three dimensional or animated visual display. The assembly includes an image element having segments or strips of an interlaced image and includes a reflective substrate including reflectors or mirror elements each having an elongate reflective surface and extending parallel to the segments of the interlaced image. The reflectors focus on the interlaced image to illuminate the segments with reflected light to produce a visual display or effect. Each of the reflectors may have a parabolic cross section to focus reflected light rays onto the segments. A mounting substrate of transparent material is positioned between the image element and the reflective substrate. The mounting substrate abuts the reflectors and provides a planar surface spaced apart from the grooves upon which the image element is provided. Illumination spaces are provided in the image element to facilitate light reaching the reflectors.