MULTI-STAGE AMPLIFIER CIRCUIT
    41.
    发明申请

    公开(公告)号:US20220116002A1

    公开(公告)日:2022-04-14

    申请号:US17491578

    申请日:2021-10-01

    Inventor: Min-Hung Hu

    Abstract: A multi-stage amplifier circuit includes a pre-stage amplifier circuit and a floating control circuit. The pre-stage amplifier circuit amplifies a voltage difference between its input terminals, to generate plural pre-stage transconductance currents flowing through corresponding plural pre-stage transconductance nodes. The floating control circuit includes: a floating reference transistor configured as a source follower and a floating amplifier. The floating amplifier and the floating reference transistor are coupled to form feedback control and to generate an upper driving signal and a lower driving signal according to a floating reference level in the floating control circuit. The upper driving signal is higher than the lower driving signal with a predetermined voltage difference. The floating control circuit is electrically connected to the plural pre-stage transconductance nodes and is floating in common mode relative to the pre-stage transconductance nodes.

    Resonant wireless power transmitter circuit and control circuit and control method thereof

    公开(公告)号:US11283298B2

    公开(公告)日:2022-03-22

    申请号:US16860999

    申请日:2020-04-28

    Abstract: The present invention discloses a resonant wireless power transmitter circuit, which has an input impedance. The resonant wireless power transmitter circuit includes: a driver circuit coupled with a power supply, which includes at least a power switch; a switching resonant control circuit coupled with the driver circuit, such that the driver operates at a pre-determined or a variable resonant frequency; an adjustable impedance matching circuit coupled with the driver circuit, which includes at least a varactor; a transmitter circuit coupled with the impedance matching circuit and the driver circuit, which includes at least a transmitter coil; and an impedance control circuit coupled with the adjustable impedance matching circuit and the driver circuit, which provides an impedance control signal to control the reactance of the varactor, such that the input impedance of the resonant wireless power transmitter circuit is matched at the pre-determined or the variable resonant frequency.

    Charger circuit and charging control method

    公开(公告)号:US11258273B2

    公开(公告)日:2022-02-22

    申请号:US16787816

    申请日:2020-02-11

    Abstract: A charger circuit which supplies a charging power to charge a battery circuit, includes: a conversion switch circuit, at least one capacitor and a conversion control circuit. The conversion switch circuit is coupled between a charging power and a ground level and includes conversion switches connected in series. The conversion switch circuit has battery voltage balancing nodes electrically connected to the battery circuit, such that each battery is electrically connected between two of the battery voltage balancing nodes. The conversion control circuit is coupled to the conversion switch circuit and provides operation signals to the conversion switch circuit, to respectively control the corresponding conversion switches, so that the capacitor is periodically connected in parallel to each battery of the battery circuit, thereby balancing the battery voltages of the batteries.

    RESONANT SWITCHING POWER CONVERTER
    44.
    发明申请

    公开(公告)号:US20220029531A1

    公开(公告)日:2022-01-27

    申请号:US17361866

    申请日:2021-06-29

    Abstract: A resonant switching power converter includes: capacitors, switches, at least one charging inductor, at least one discharging inductor and a pre-charging circuit. The pre-charging circuit controls a first switch of the switches when the resonant switching power converter operates in a pre-charging mode, to control an electrical connection relationship between the input voltage and a first capacitor of the capacitors and to control other capacitors of the capacitors, thus controlling the capacitors to be connected in parallel to one another or to be connected in series to one another, so that when a voltage drop across the first capacitor is lower than a predetermined voltage, the voltage drop across each capacitor is charged to the predetermined voltage. After operating in the pre-charging mode, the resonant switching power converter subsequently operates in a resonant voltage conversion mode, to thereby convert an input voltage to an output voltage.

    Two-Stage Power Converter
    45.
    发明申请

    公开(公告)号:US20210384820A1

    公开(公告)日:2021-12-09

    申请号:US17319728

    申请日:2021-05-13

    Abstract: A two-stage power converter includes: a resonant switched-capacitor converter (RSCC) receiving an input voltage and generating a first stage voltage; a voltage regulator receiving the first stage voltage and generating an output voltage; and a communication interface and control circuit generating a charging operation signal, at least one discharging operation signal and a switching signal. The charging operation signal and the discharging operation signal are employed to control the RSCC to perform a charging process and at least one discharging process respectively, and the switching signal is employed to control the voltage regulator, so as to synchronize a resonant frequency of the RSCC and a switching frequency of the voltage regulator. The communication interface and control circuit adjusts a delay interval after the discharging process ends, and starts the charging process at an end time point of the delay interval.

    Resonant Switching Power Converter
    46.
    发明申请

    公开(公告)号:US20210367520A1

    公开(公告)日:2021-11-25

    申请号:US17244920

    申请日:2021-04-29

    Abstract: A resonant switching power converter includes: plural capacitors; plural switches; at least one charging inductor; at least one discharging inductor; a controller which generates a charging operation signal and at least one discharging operation signal; and at least one zero current detection circuit which detects a charging resonant current flowing through the charging inductor in a charging process and/or detect a discharging resonant current flowing through the discharging inductor in a discharging process. When detecting that a level of the charging resonant current or a level of the discharging resonant current is zero, the zero current detection circuit generates at least one zero current detection signal which is sent to the controller. The controller determines start time points and end time points of the charging process and the discharging process according to the zero current detection signal. There can be plural discharging processes.

    POWER CONVERTER
    47.
    发明申请

    公开(公告)号:US20210328507A1

    公开(公告)日:2021-10-21

    申请号:US17210434

    申请日:2021-03-23

    Abstract: A power converter includes: capacitors; switches coupled to the corresponding capacitors, wherein the switches switch electrical connection relationships of corresponding capacitors according to operation signals; one or more charging inductors connected in series to one or more corresponding capacitors; one or more discharging inductors connected in series to one or more corresponding capacitors. In a charging process, by switching the switches, a series connection of the capacitors and the corresponding charging inductor(s) is formed between the input voltage and the output voltage, so as to form a charging path. In a discharging process, by switching the switches, each capacitor and one of the corresponding discharging inductors are connected in series between the output voltage and ground voltage level, so as to form plural discharging paths. The charging process and the discharging process are arranged in alternating and repetitive manner, to convert the input voltage to the output voltage.

    Interface control circuit and control method thereof

    公开(公告)号:US11146056B2

    公开(公告)日:2021-10-12

    申请号:US15931187

    申请日:2020-05-13

    Abstract: An interface control circuit complying with an interface specification includes: an interface signal transceiver circuit and a protection circuit. The interface signal transceiver circuit is coupled to a first interface connection pin and a second interface connection pin of a first interface connector circuit. The interface signal transceiver circuit is for transmitting and/or receiving an interface signal according to the interface specification. When the interface signal transceiver circuit operates under a first state, the protection circuit determines whether a foreign object exists between the first interface connection pin and the second interface connection pin according to a voltage change or a current change at the second interface connection pin. Under the first state, the interface signal transceiver circuit generates a pull-up signal and a pull-down signal which are toggled with each other at the first interface connection pin.

    Charger circuit with temperature compensation function and controller circuit thereof

    公开(公告)号:US11139670B2

    公开(公告)日:2021-10-05

    申请号:US16046979

    申请日:2018-07-26

    Abstract: A charger circuit with temperature compensation function includes: a power converter, an input voltage sense circuit, an output adjustment circuit and a charging control circuit. The power converter converts an input voltage supplied from a photovoltaic power module to an output voltage. The input voltage sense circuit generates a signal related to the input voltage according to the input voltage. The output adjustment circuit generates an output adjustment signal according to the signal related to the input voltage. The charging control circuit generates a control signal according to the output adjustment signal, thereby adjusting a level of an output current supplied from the power converter. When a level of the input voltage is smaller than a predetermined voltage threshold, the power converter decreases the output current.

Patent Agency Ranking