摘要:
Electronic devices are provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antenna structures. The antenna structures may include antennas such as inverted-F antennas that contain antenna resonating elements and antenna ground elements. Antenna resonating elements may be formed from patterned conductive traces on substrates such as flex circuit substrates. Antenna ground elements may be formed from conductive device structures such as metal housing walls. Support and biasing structures such as dielectric support members and layer of foam may be used to support and bias antenna resonating elements against planar device structures. The planar device structures against which the antenna resonating elements are biased may be planar dielectric members such as transparent layers of display cover glass or other planar structures. Adhesive may be interposed between the planar structures and the antenna resonating elements.
摘要:
A test system for testing a device under test (DUT) is provided. The test system may include a DUT receiving structure configured to receive the DUT during testing and a DUT retention structure that is configured to press the DUT against the DUT receiving structure so that DUT cannot inadvertently shift around during testing. The DUT retention structure may include a pressure sensor operable to detect an amount of pressure that is applied to the DUT. The DUT retention structure may be raised and lowered vertically using a manually-controlled or a computer-controlled positioner. The positioner may be adjusted using a coarse tuning knob and a fine tuning knob. The positioner may be calibrated such that the DUT retention structure applies a sufficient amount of pressure on the DUT during production testing.
摘要:
A display cover layer may be mounted in an electronic device housing using housing structures such as corner brackets. A slot antenna may be formed from a corner bracket opening, metal traces on a hollow plastic support structure, or other conductive structures. The slot antenna may have a main portion with opposing ends. An antenna feed may be located at one of the ends. The slot antenna may have a slot with one or more bends. The bends may provide the slot antenna with a C-shaped outline. A side branch slot may extend from the main portion of the slot at a location between the two bends. The presence of the side branch slot may enhance antenna bandwidth. A hollow enclosure may serve as an antenna support structure and as a speaker box enclosing a speaker driver. The antenna feed may be positioned so as to overlap the speaker driver.
摘要:
A test system for characterizing an antenna tuning element is provided. The test system may include a test host, a radio-frequency tester, and a test fixture. The test system may calibrate the radio-frequency tester using known coaxial standards. The test system may then calibrate transmission line effects associated with the test fixture using a THRU-REFLECT-LINE calibration algorithm. The antenna tuning element may be mounted on a test socket that is part of the test fixture. While the antenna tuning element is mounted on the test socket, scattering parameter measurements may be obtained using the radio-frequency tester. An equivalent circuit model for the test socket can be obtained based on the measured scattering parameters and known characteristics of the antenna tuning element. Once the test socket has been characterized, an equivalent circuit model for the antenna tuning element can be obtained by extracting suitable modeling parameters from the measured scattering parameters.
摘要:
A flex circuit may have test structures and antenna structures. The test structures may include test capacitors and transmission lines. The performance of the test structures may be measured using test equipment. Pass/fail criteria may be applied to the flex circuit based on the measured values. If the flex circuit is a failing circuit, flex circuit manufacturing settings may be adjusted. The performance of a radio-frequency (RF) cable may also be measured using the test equipment. Sample portions of the RF cable may be obtained and measured. Pass/fail criteria may be applied to the RF cable based on measured cable loss values. If the RF cable is a failing cable, RF cable manufacturing settings may be adjusted. Antenna structures associated with passing flex circuits and RF cable segments associated with passing sample RF cable segments may be incorporated into a wireless device during production device assembly.
摘要:
A wireless electronic device may contain at least one antenna tuning element for use in tuning the operating frequency range of the device. The antenna tuning element may include radio-frequency switches, continuously/semi-continuously adjustable components such as tunable resistors, inductors, and capacitors, and other load circuits that provide desired impedance characteristics. A test station may be used to measure the radio-frequency characteristics associated with the tuning element. The test station may provide adjustable temperature, power, and impedance control to help emulate a true application environment for the tuning element without having to place the tuning element within an actual device during testing. The test system may include at least one signal generator and a tester for measuring harmonic distortion values and may include at least two signal generators and a tester for measuring intermodulation distortion values. During testing, the antenna tuning element may be placed in a series or shunt configuration.
摘要:
A method of manufacture for a portable computing device is described. In particular, methods and apparatus for assessing a quality of weld joints used to connect one or more components of the portable computing device are described. The weld joints can include one or more weld points. At a weld check station, using a vector network analyzer, a test signal generated can be passed through the weld joint and a response signal can be measured. The measured characteristics can be used to assess a quality of the weld joint. In one embodiment, the vector network analyzer can be used to generate a number of high frequency test signals that are passed through the weld to perform a time domain reflectometry measurement where the weld joint can be accepted or rejected based upon the measurement.
摘要:
Antennas are provided for electronic devices such as portable computers. An electronic device may have a housing in which an antenna is mounted. The housing may be formed of conductive materials. A dielectric antenna window may be mounted in the housing to allow radio-frequency signals to be transmitted from the antenna and to allow the antenna to receive radio-frequency signals. Near-field radiation limits may be satisfied by reducing transmit power when an external object is detected in the vicinity of the dielectric antenna window and the antenna. A proximity sensor may be used in detecting external objects. A parasitic antenna resonating element may be interposed between the antenna resonating element and the dielectric antenna window to minimize near-field radiation hotspots. The parasitic antenna resonating element may be formed using a capacitor electrode for the proximity sensor. A ferrite layer may be interposed between the parasitic element and the antenna window.
摘要:
Antennas are provided for electronic devices such as portable computers. An electronic device may have a housing in which an antenna is mounted. The housing may be formed of conductive materials. A dielectric antenna window may be mounted in the housing to allow radio-frequency signals to be transmitted from the antenna and to allow the antenna to receive radio-frequency signals. Near-field radiation limits may be satisfied by reducing transmit power when an external object is detected in the vicinity of the dielectric antenna window and the antenna. A proximity sensor may be used in detecting external objects. A parasitic antenna resonating element may be interposed between the antenna resonating element and the dielectric antenna window to minimize near-field radiation hotspots. The parasitic antenna resonating element may be formed using a capacitor electrode for the proximity sensor. A ferrite layer may be interposed between the parasitic element and the antenna window.
摘要:
Handheld electronic devices are provided that contain wireless communications circuitry having at least one antenna. The antenna may have a planar ground element and a planar resonating element. The planar ground element may have a rectangular shape that matches a rectangular housing shape for a handheld electronic device. A dielectric-filled slot may be formed in one end of the planar ground element. The planar resonating element may be located above the slot. The antenna may be a hybrid antenna that contains both a slot antenna structure formed from the slot and a planar inverted-F structure formed from the planar resonating element and the planar ground element. The antenna may be fed using a single transmission line or two transmission lines. With two transmission lines, one transmission line may be associated with the slot antenna structure and one transmission line may be associated with the planar inverted-F antenna structure.