Abstract:
A liquid crystal display device (LCD) includes a liquid crystal panel displaying an image; a first transparent plate disposed on the liquid crystal panel; a second transparent plate disposed underneath the liquid crystal panel; a support member supporting the second transparent plate and the liquid crystal panel; and a fixing member disposed on the first transparent plate, the fixing member coupled with the support member to fix the liquid crystal panel and the first and second transparent plates in place, and to protect the liquid crystal panel and the first and second transparent plates.
Abstract:
A method for recognizing markers printed on a learning material, includes sampling an image of the learning material; grouping the sampled image of pixels into a first image group and a second image group based on a threshold; and calculating medians of the first image group and the second image group to update the threshold with a first average value of the calculated medians. Further, the method for recognizing markers printed on the learning material includes repeating the above until a difference between a previous threshold and an updated threshold is equal to or smaller than a reference value; binarizing an image captured by a camera based on the updated threshold; and detecting the markers based on the binary image.
Abstract:
A method of fabricating a liquid crystal display device, including: forming alignment layers over a first substrate and a second substrate, wherein the first and second substrates have a first region and a second region, the first and second regions each including a panel region, wherein a panel region in the first region has a different driving mode than a panel in the second region; producing a first alignment direction in the alignment layers of the first region; producing a second alignment direction in the alignment layers of the second region; assembling the first and second substrates together; and dividing the assembled substrates into liquid crystal display panels.
Abstract:
An array substrate for an in-plane switching mode liquid crystal display device includes a gate line on a substrate, a gate insulating layer on the gate line, first and second data lines on the gate insulating layer and crossing the gate line to define a pixel region, a first extending portion on the gate insulating layer and extending from the second data line, a thin film transistor connected to the gate line and the first data line, a passivation layer on the first and second data lines and the thin film transistor, the passivation layer having a first contact hole exposing a drain electrode of the thin film transistor, a first pattern in the pixel region on the passivation layer, the first pattern connected to the drain electrode through the first contact hole and overlapping the first extending portion, a plurality of first electrodes extending from the first pattern, the plurality of first electrodes parallel to the first and second data lines, a second pattern in the pixel region on the passivation layer and parallel to gate line, the second pattern electrically connected to the second data line, and a plurality of second electrodes extending from the second pattern and alternating with the plurality of first electrodes by a first distance between adjacent first and second electrodes, wherein one of the plurality of first electrodes is spaced apart from the second data line by a distance equal to the first distance or more than the first distance and less than double the first distance, and another of the plurality of first electrodes or one of the plurality of second electrodes is spaced apart from the first data line by a second distance narrower than the first distance.
Abstract:
A divided exposure method for a photolithography process is disclosed, which uses a mask. The mask for an exposer having a left and right light intensity deviation includes a substrate; a first pattern in a middle of the substrate; and second and third patterns on left and right sides of the first pattern, respectively, wherein the first and second patterns compensate for the left and right light intensity deviation of the exposer.
Abstract:
A liquid crystal display device includes a gate line on a substrate including a display region and a non-display region; odd and even data lines crossing the gate line to define a pixel region in the display region; a thin film transistor connected to the gate line and one of the odd and even data lines; a pixel electrode in the pixel region and connected to the thin film transistor; first and second data link lines electrically connected to the odd and even data lines, respectively, and formed with a gate insulating layer therebetween; and first and second data pad electrodes at one ends of the first and second data link lines, respectively.
Abstract:
A base substrate includes a first liquid crystal display (LCD) panel and a second LCD panel on the base substrate, wherein the second LCD panel contacts the first LCD panel.
Abstract:
An LCD device is disclosed, having a polarizer of which a retardation value is variable on regions for compensation of gravity defect caused by an excess liquid crystal at room temperature, wherein the LCD device includes an LCD panel having a normal cell gap region and an abnormal cell gap region; and the polarizer having a compensated retardation value Δnd for the abnormal cell gap region.
Abstract:
A liquid crystal display device and methodology of fabricating the same includes a picture display part provided on a substrate; a tape carrier package mounted with an integrated circuit to drive the picture display part, the tape carrier package having first pads attached to the substrate; signal lines provided on the substrate to apply signals to the tape carrier package; and second pads having a larger width than the first pads, the second pads being provided on the substrate in such a manner to be connected to the signal lines, and the second pads being connected to the first pads.
Abstract:
A method of forming a liquid crystal cell for a liquid crystal display device includes defining a first cell region, second cell regions having smaller sizes than the first cell region, and a buffer region disposed between adjacent second cell regions on a first base substrate. After the regions are defined, elements are formed in the first and second cell regions and a buffer pattern is formed in the buffer region. An alignment layer is formed to cover the elements and the buffer pattern. The alignment layer is then rubbed along a direction from the second cell regions to the first cell region.