Abstract:
A method and apparatus for the collection of physiological data from a patient is disclosed herein. An electrode assembly comprises an external label identifying an anatomical location and an electrode identifying circuitry that produces a signal indicative of the anatomical location to which the electrode assembly is to be attached. The electrode assembly transmits both the collected physiological signal and the identification signal to a data monitor for collection and processing physiological data.
Abstract:
Systems and methods for steam turbine remote monitoring, calculating corrected efficiency, monitoring performance degradation, diagnosing and benchmarking are disclosed with an example turbine system including a turbine, a data acquisition device coupled to the turbine, the data acquisition device for collecting turbine data that includes performance parameters of the turbine and a central monitoring system coupled to the data acquisition device, the central monitoring system for receiving the collected turbine data and processing the turbine data to determine turbine performance.
Abstract:
The invention provides an improved method for the purification of nucleic acid molecules, which method comprises generating a cellular lysate containing the nucleic acid; contacting the lysate with an anion exchanger bound to a solid support matrix under conditions such that the anion exchanger binds the nucleic acid; followed by eluting the nucleic acid from the anion exchanger with an aqueous mobile phase comprising an elution solution; and desalting the eluted nucleic acid such that it is suitable for downstream applications. The improvement of the method includes providing the anion exchanger in a packed column, wherein the column is packed using a salt solution containing an antimicrobial agent. In addition, the salt solution has a salt concentration similar to that of the lysate, such that the column does not need equilibration prior to sample loading.
Abstract:
A dual-band multiple beam antenna system for a communications satellite sharing a set of reflector antennas for the transmit and receive frequencies. One set of reflectors is common to both the downlink and uplink frequencies. The feed horns are diplexed and exhibit frequency-dependent radiation patterns that separate the phase centers over the downlink and uplink frequency bands to obtain dual-band performance. The focal point of the reflector is in close proximity to the phase center corresponding to the downlink frequency band. The phase center for the uplink frequency band is spaced a predetermined distance from the phase center of the downlink frequency band. According to the present invention, the uplink frequencies are defocused and the downlink frequencies are focused thereby creating identical radiation patterns at both frequency bands and over the coverage region of the communications satellite.
Abstract:
A synthesized reflector surface (12) for directing communication signals (27) in a communication system (10) that operates in a plurality of orbital slots and to a plurality of regions (28) within a first coverage area (30) is provided. The synthesized reflector surface (12) includes a plurality of contiguous profile surfaces (40) that form the reflector surface (12). Each of the plurality of contiguous profile surfaces (40) alters the phase-of the communication signals (27) to provide a first gain for a first satellite orbit location (32) and a second gain for a second satellite orbit location (34). The plurality of contiguous profile surfaces (40) directs the signals from the location (32) in a first orientation to the first coverage area (30) or from the location (34) in a second orientation to the first coverage area (30). A method is provided for synthesizing the reflector surface (12). A satellite system (10) and a method of configuring the satellite system (10) are also provided utilizing the synthesized reflector surface (12).
Abstract:
A satellite broadcast system and method, particularly useful for television signals, allows for local as well as nationwide broadcast service by allocating greater satellite resources to the more important local service areas. This is accomplished by broadcasting a non-uniform pattern of local service beams and designing the system to establish different service area priorities through factors such as the individual beam powers, sizes, roll-off characteristics and peak-to-edge power differentials. Frequency reuse is enhanced by permitting a certain degree of cross-beam interference, with lower levels of interference established for the more important service areas.
Abstract:
A two-step method is used to reconfigure beams among different orbital slots for a satellite system. The satellite is biased at one or more orbital slots for a back-up mission, while it looks at the sub-satellite point for the primary mission. Body steering is achieved using pitch and roll biases. The main reflector of the antenna is gimballed in order to steer the beams to different locations for the back-up mission. Beam size is controlled through the use of different sized reflectors and by varying the feed size. Different sized beams are interleaved among multiple reflectors.