Abstract:
This description relates to a circuit including a bit line. The circuit further includes at least one memory bank. The at least one memory bank includes at least one memory cell, a first device configured to provide a current path between the bit line and the at least one memory cell when the at least one memory cell is activated, and a second device configured to reduce current leakage between the bit line and the at least one memory cell when the at least one memory cell is deactivated. The circuit further includes a tracking device configured to receive a minor current substantially equal to a current along the current path, the tracking device configured to have a resistance substantially equal to a cumulative resistance of all memory cells of the at least one memory cell.
Abstract:
An OTP memory array includes a bit line coupled to a plurality of memory banks. Each memory bank includes a plurality of memory cells, a footer, and a bias device, and is associated with a current mirror. When a memory cell is activated (e.g., for reading) the memory bank including the activated memory cell is referred to as an activated memory bank and other banks are referred to as deactivated memory banks. A current tracking device serves to compensate for bit line leakage current in deactivated memory cells in the activated memory bank. Further, footers and bias devices in deactivated memory banks and associated current mirrors are configured to reduce/eliminate bit line current leakage through deactivated memory cells in deactivated memory banks.
Abstract:
An integrated circuit includes a sensing circuit, a fuse box, and a fuse bus decoder. The sensing circuit includes an output node, and the fuse box includes a plurality of switches coupled in series with a plurality of resistive elements. The fuse box is coupled to the output node of the sensing circuit from which the fuse box is configured to receive a current. The fuse bus decoder is coupled to the fuse box and includes at least one demultiplexer configured to receive a signal and in response output a plurality of control signals for selectively opening and closing the switches of the fuse box to adjust a resistance across the fuse box. A voltage of the output node of the sense amplifier is based on a resistance the fuse box and the current.
Abstract:
Some embodiments regard a memory array that has a plurality of eFuse memory cells arranged in rows and columns, a plurality of bit lines, and a plurality of word lines. A column includes a bit line selector, a bit line coupled to the bit line selector, and a plurality of eFuse memory cells. An eFuse memory cell of the column includes a PMOS transistor and an eFuse. A drain of the PMOS transistor is coupled to a first end of the eFuse. A gate of the PMOS transistor is coupled to a word line. A source of the PMOS transistor is coupled to the bit line of the column.
Abstract:
A circuit includes a fuse and a sensing and control circuit. The fuse is coupled between a MOS transistor and a current source node. The sensing and control circuit is configured to receive a programming pulse and output a modified programming signal to the gate of the MOS transistor for programming the fuse. The modified programming signal has a pulse width based on a magnitude of a current through the first fuse.
Abstract:
An OTP memory array includes a bit line coupled to a plurality of memory banks. Each memory bank includes a plurality of memory cells, a footer, and a bias device, and is associated with a current mirror. When a memory cell is activated (e.g., for reading) the memory bank including the activated memory cell is referred to as an activated memory bank and other banks are referred to as deactivated memory banks. A current tracking device serves to compensate for bit line leakage current in deactivated memory cells in the activated memory bank. Further, footers and bias devices in deactivated memory banks and associated current mirrors are configured to reduce/eliminate bit line current leakage through deactivated memory cells in deactivated memory banks.
Abstract:
An electrical fuse device includes at least one electrical fuse cell having a first switch device serially coupled with an electrical fuse representing a logic value; and at least one dummy cell having a second switch device coupled to the first switch device via a common word line, the second switch device having a trigger-on voltage lower than that of the first device, such that the second switch becomes conductive earlier than the first switch device for bypassing an electrostatic discharge (ESD) current therethrough during an ESD event.
Abstract:
During various processing operations, ions from process plasma may be transfer to a deep n-well (DNW) formed under devices structures. A reverse-biased diode may be connected to the signal line to protect a gate dielectric formed outside the DNW and is connected to the drain of the transistor formed inside the DNW.
Abstract:
A circuit includes a fuse circuit and a control circuit. The fuse circuit has an electrical fuse. The control circuit is configured to receive an input signal having an input pulse, and, based on a feedback signal from the fuse circuit, generates a read pulse smaller than the input pulse for use in reading the data stored in the electrical fuse.
Abstract:
An amplifying circuit comprises a bias circuit, a reference circuit, a first circuit, and an amplifying sub-circuit. The bias circuit is configured to provide a bias current. The reference circuit is configured to provide a first differential input based on a reference resistive device and a reference current derived from the bias current. The first circuit is configured to provide a second differential input based on a first current and a first resistance. The amplifying sub-circuit is configured to receive the first differential input and the second differential input and to generate a sense amplifying output indicative of a resistance relationship between the first resistance and a resistance of the reference resistive device.