Abstract:
In a refrigeration unit including a variable performance compressor driven by an inverter motor, a sensor is configured to detect a physical amount corresponding to a refrigerant pressure on the high-pressure side of a refrigerant circuit. A measured value of the physical amount is compared with a first reference value corresponding to a first predetermined pressure of the refrigerant and a second reference value corresponding to a second predetermined pressure lower than the first predetermined pressure. A protective operation can start if the comparison result indicates that an actual refrigerant pressure is higher than the first predetermined pressure. The performance of the compressor can be gradually lowered if the comparison result indicates that an actual refrigerant pressure is between the first predetermined pressure and the second predetermined pressure.
Abstract:
An angle calculator detects a rotation angle θa of a rotor. A three-phase/d-q axis converter outputs detected current id, iq on d-q coordinate axes by making a conversion, based on a corrected detection angle θc obtained by adding or subtracting an amount of detection deviation from a time point of current detection to or from the detection angle θa. A command current calculator calculates command current id*, iq* on the d-q coordinate axes based on a steering torque T and a speed S. A feedback controller calculates command voltages vd, vq on the d-q coordinate axes based on the command current id*, iq* and the detected current id, iq. A d-q axis/three-phase converter converts the command voltages vd, vq into three-phase command voltages, based on a corrected detection angle θb obtained by adding an amount of detection deviation from a time point when a motor is driven to the detection angle θa. The deviation can be eliminated by the command voltages, and the motor can be driven with high precision.
Abstract:
An angle calculator determines an angle of a rotor. An angular speed calculator determines an angular speed of the rotor. A command current calculator determines a command current defined on a dq-axis. An open loop controller determines a command voltage defined on the dq-axis in accordance with a circuit equation of a motor, based on the command current and the angular speed. A dq-axis/three-phase converter converts the command voltage into a three-phase command voltage. A resistance calculator and a Φ-value calculator respectively determines circuit resistance including armature winding resistance and a number of armature winding linkages which are included in the circuit equation of the motor, based on temperature of the motor detected by a temperature sensor and with reference to a table or the like which is stored in advance.
Abstract:
A current sensor of a motor controller detects the current applied to a motor drive circuit and thus a phase where a failure cannot be detected would occur without taking any measures. However, an abnormal current monitor section contained in a microcomputer receives a voltage signal of an average value of the currents detected in the current sensor by allowing a signal to pass through a first LPF having a cutoff frequency sufficiently lower than the frequency of a PWM signal. Therefore, whether or not the value is within a predetermined normal range is checked, whereby whether or not some failure containing a failure of the current sensor occurs can be easily determined about every phase.
Abstract:
A storage device controlling device includes: a head sector generation section that creates predetermined information different from control information to be read out first from plural storage media; an input/output section that writes the control information into a head sector on the storage media; a reception section that receives an access request from outside; and a conversion section that converts a first sector number as a sector number on the plural storage media into a second sector number as a sector number other than that of the head sector on the plurality of storage media, based on a predetermined conversion method, the first sector number being designated by the access request, and the input/output section further accesses the plural storage media at the second sector number.
Abstract:
An optical scanning device includes a light source having light emitting points for emitting light beams, a coupling optical element that couples the light beams, a deflecting unit that deflects and scans the light beams, and a scanning optical system that focus the light beams to form an image. The optical scanning device satisfies the following condition: F tan(θ/2)+A
Abstract translation:光学扫描装置包括具有用于发射光束的发光点的光源,耦合光束的耦合光学元件,偏转和扫描光束的偏转单元,以及聚焦光束以形成的扫描光学系统 一个图像。 光学扫描装置满足以下条件:F tan(θ/ 2)+ A
Abstract:
A light-emitting unit includes M (M≧3) number of light-emitting elements. A light-receiving unit includes N (N≧3) number of light-receiving elements that receive a reflected light from at least one of a supporting member and a toner pattern. The toner pattern is formed on a surface of the supporting member. A detection light is emitted onto the supporting member from the light-emitting unit. A reflected light reflected from at least one of the supporting member and the toner pattern is received by the light-receiving unit. A position of the toner pattern on the supporting member is detected based on outputs of the light-receiving elements.
Abstract:
An electric power steering system is provided which is capable of providing a favorable steering feeling without using compensation logics such as of inertia compensation and friction compensation. The electric power steering system includes road-noise suppression control means (213) for controlling a steering assist motor (9) in a manner to damp torque transmission in a higher frequency region representing road noises than a frequency region representing road information. A friction value of a steering mechanism (A) is decreased enough to allow the intrinsic vibrations of the steering mechanism (A) to appear. Rotor inertia of the steering assist motor (9) is set to a value small enough to allow the frequencies of the intrinsic vibrations to be present in the frequency region where the torque transmission is damped by the road-noise suppression control means (213).
Abstract:
If the magnitude of a command voltage vector is greater than a predetermined voltage value indicated by a voltage limit circle, the magnitude of a voltage vector, which corresponds to a q-axis current and which forms the command voltage vector, is adjusted so that the magnitude of the command voltage vector is equal to or less than the predetermined voltage value. Then a q-axis current estimated value is obtained based on i) the ratio of the magnitude of the voltage vector from the q-axis current after adjustment to the magnitude of the voltage vector from the q-axis current before adjustment, and ii) a q-axis current command value.
Abstract:
Light beams emitted from a light source, which is a semiconductor laser, are changed to weak diverging rays by a coupling lens, pass through an aperture, and are changed to parallel beams in a main scanning direction and light beams, which focus near a polygon mirror, in a sub-scanning direction by an anamorphic lens forming a first optical system. Further, the light beams are deflected by the polygon mirror and focused on an image surface through a dust-proof glass by a deflector side scanning lens and an image surface side scanning lens. The light source and the coupling lens are fixed to an identical member made of aluminum. Here, all lenses are made of resin, and diffractive surfaces are provided on a light source side surface of the coupling lens and an image surface side surface of the anamorphic lens.