Abstract:
Techniques are described for increasing data access performance for a memory device. In various embodiments, a scheduler/controller is configured to manage data as it read to or written from a memory. Read access is increased by partitioning a memory into a group of sub-blocks, associating a parity block with the sub-blocks, and accessing the sub-blocks to read data as needed. Write speeds may be improved by adding a pending write buffer to a group of memory sub-blocks. Such a buffer may be sized to be equal to the group of memory sub-blocks. The pending write buffer is used to handle collisions for write accesses to the same block, allowing two simultaneous writes to any regular memory block to occur.
Abstract:
A programmable logic integrated circuit device has a plurality of regions of programmable logic disposed on the device in a plurality of intersecting rows and columns of such regions. Interconnection resources (e.g., interconnection conductors, signal buffers/drivers, programmable connectors, etc.) are provided on the device for making programmable interconnections to, from, and/or between the regions. At least some of these interconnection resources are provided in two forms that are architecturally similar (e.g., with similar and substantially parallel routing) but that have significantly different signal propagation speed characteristics. For example, a major or larger portion of such dual-form interconnection resources may have what may be termed normal signal speed, while a smaller minor portion may have significantly faster signal speed. Secondary (e.g., clock and clear) signal distribution may also be enhanced, and so may be input/output circuitry and cascade connections between adjacent or nearby logic modules on the device.
Abstract:
The present invention discloses an LDO (Low DropOut) linear voltage regulator, which is based on an NMC (Nested Miller Compensation) architecture and can be capacitor-free, wherein an active resistor is added to the feedback path of the Miller compensation capacitor to increase the controllability of the damping factor, solve the problem of extensively using the output capacitor with a parasitic resistance, and solve the problem that a compromise must be made between the damping factor control and the system loop gain. Further, the present invention utilizes a capacitor-sharing technique to reduce the Miller capacitance required by the entire system and accelerate the stabilization of output voltage without influencing stability.
Abstract:
A programmable logic device has many regions of programmable logic, together with relatively general-purpose, programmable, interconnection resources that can be used to make interconnections between virtually any of the logic regions. In addition, various types of more local interconnection resources are associated with each logic region for facilitating the making of interconnections between adjacent or nearby logic regions without the need to use the general-purpose interconnection resources for those interconnections. The local interconnection resources support flexible clustering of logic regions via relatively direct and therefore high-speed interconnections, preferably in both horizontal and vertical directions in the typically two-dimensional array of logic regions. The logic region clustering options provided by the local interconnection resources are preferably boundary-less or substantially boundary-less within the array of logic regions.
Abstract:
An apparatus for shear testing bonds on 8″ and 12″ silicon substrates. The apparatus includes a removable platform for securing the 8″ wafer and a vacuum chuck for securing a 12″ wafer and the removable platform at the same time. A control module controls a moving mechanism to shift a probe to contact the solder ball of the 12″ substrate secured on the vacuum chuck or the solder ball of the 8″ wafer on the removable platform when the removable platform is fixed on the vacuum chuck. The moving mechanism moves the probe in a direction to separate the solder ball from the wafer. A sensor measures the pulling force exerted on the probe when the probe is moved in a direction and separates the solder ball from the wafer.
Abstract:
An apparatus for shear testing bonds on 8″ and 12″ silicon substrates. The apparatus includes a removable platform for securing the 8″ wafer and a vacuum chuck for securing a 12″ wafer and the removable platform at the same time. A control module controls a moving mechanism to shift a probe to contact the solder ball of the 12″ substrate secured on the vacuum chuck or the solder ball of the 8″ wafer on the removable platform when the removable platform is fixed on the vacuum chuck. The moving mechanism moves the probe in a direction to separate the solder ball from the wafer. A sensor measures the pulling force exerted on the probe when the probe is moved in a direction and separates the solder ball from the wafer.
Abstract:
A programmable logic integrated circuit device has a plurality of regions of programmable logic disposed on the device in a plurality of intersecting rows and columns of such regions. Interconnection resources (e.g., interconnection conductors, signal buffers/drivers, programmable connectors, etc.) are provided on the device for making programmable interconnections to, from, and/or between the regions. At least some of these interconnection resources are provided in two forms that are architecturally similar (e.g., with similar and substantially parallel routing) but that have significantly different signal propagation speed characteristics. For example, a major or larger portion of such dual-form interconnection resources may have what may be termed normal signal speed, while a smaller minor portion may have significantly faster signal speed. Secondary (e.g., clock and clear) signal distribution may also be enhanced, and so may be input/output circuitry and cascade connections between adjacent or nearby logic modules on the device.
Abstract:
A high-performance programmable logic architecture has embedded memory (608). arranged at the peripheries or edges of the integrated circuit. This enhances the performance of the programmable logic integrated circuit by shortening the lengths of the programmable interconnect (748). In a specific embodiment, the memory blocks (703) are organized in rows along the top and bottom edges of the integrated circuit. The logic elements (805) can be directly programmable routed and connected to driver blocks (809) of the logic block in adjacent rows and columns. This permits fast interconnection of signals without using the global programmable interconnect resources (815, 825). Using similar direct programmable interconnections (828, 830, 835), the logic blocks can directly programmable connect to the memory blocks without using the global programmable interconnect resources. The present invention also provides technique of flexibly combining or stitching multiple memories together to form memories of a desired size.
Abstract:
A programmable logic integrated circuit device has logic modules with some inputs that are optimized for speed (to enhance the speed-performance of the logic modules). For example, some of the inputs may be programmably swappable within a logic module so that a speed-critical input signal can be more easily routed to a faster part of the logic module circuitry. Alternatively or in addition, drivers may be added to the logic module circuitry to improve the speed performance of some of the inputs to the logic module. The logic module may be provided with enhanced “lonely register” circuitry which allows the lonely register output signal to be fed back for use as an input to the combinatorial logic of the logic module. The registers in multiple logic modules may be directly chained to one another in a series.