Abstract:
The present invention relates to a systematic process for the creation of functionally organized, spatially patterned assemblies of polymer-microparticle composites including the AC electric field-mediated assembly of patterned, self-supporting organic (polymeric) films and organic-polymer-microparticle composites of tailored composition and morphology. The present invention further relates to the incorporation of said assemblies into other structures. The present invention also relates to the application of such functional assemblies in materials science and biology. Additional areas of application include sensors, catalysts, membranes, and micro-reactors, and miniaturized format for generation of multifunctional thin films. This invention also provides simple methods and apparatus for synthesizing thin films of tailored composition and morphology.
Abstract:
Silicone hydrogel contact lenses having a high water content are described. The lenses are derived from a polymerizable composition including a first siloxane monomer represented by formula (1): wherein m of formula (1) represents one integer from 3 to 10, n of formula (1) represents one integer from 1 to 10, R1 of formula (1) is an alkyl group having from 1 to 4 carbon atoms, and each R2 of formula (1) is independently either a hydrogen atom or a methyl group; the lenses also include units derived from a second siloxane monomer having a number average molecular weight of at least 7,000 daltons, and at least one vinyl-containing cross-linking agent. The lenses have average equilibrium water contents from about 30% wt/wt to about 70% wt/wt when fully hydrated. Batches of silicone hydrogel contact lenses and methods of making silicone hydrogel contact lenses are also described.
Abstract:
Hydrogel contact lenses that are derived from a polymerizable composition including at least one hydrophilic monomer and at least one phosphine-containing component are described. The hydrogel of the contact lenses can be a silicone hydrogel or a non-silicone hydrogel. Use of polymerizable compositions comprising a phosphine-containing component can be cured under both inert and air atmospheres, and can be used to form hydrogel contact lenses having improved shape retention properties, having improved resistance to discoloration. Batches of hydrogel contact lenses and methods of making hydrogel contact lenses are also described.
Abstract:
Silicone hydrogel contact lenses having ophthalmically acceptable surface wettabilities are obtained from pre-extracted polymerized silicone hydrogel contact lens products having relatively large amounts of removable or extractable materials. The silicone hydrogel contact lenses can be obtained from non-polar resin based contact lens molds and without surface treatments or an interpenetrating polymeric network of a polymeric wetting agent. Related lens products, polymerizable compositions, and methods are also described.
Abstract:
Silicone hydrogel contact lenses having ophthalmically acceptable surface wettabilities are obtained from pre-extracted polymerized silicone hydrogel contact lens products having relatively large amounts of removable or extractable materials. The silicone hydrogel contact lenses can be obtained from non-polar resin based contact lens molds and without surface treatments or an interpenetrating polymeric network of a polymeric wetting agent. Related lens products, polymerizable compositions, and methods are also described.
Abstract:
Silicone hydrogel contact lenses having ophthalmically acceptable surface wettabilities are obtained from pre-extracted polymerized silicone hydrogel contact lens products produced from a polymerizable composition comprising a combination of particular components. The silicone hydrogel contact lenses can be obtained from non-polar resin based contact lens molds and without surface treatments or an interpenetrating polymeric network of a polymeric wetting agent. Related lens products, polymerizable compositions, and methods are also described.
Abstract:
Silicone hydrogel contact lenses having ophthalmically acceptable surface wettabilities are obtained from pre-extracted polymerized silicone hydrogel contact lens products having relatively large amounts of removable or extractable materials. The silicone hydrogel contact lenses can be obtained from non-polar resin based contact lens molds and without surface treatments or an interpenetrating polymeric network of a polymeric wetting agent. Related lens products, polymerizable compositions, and methods are also described.