Abstract:
The present invention relates to polymer-bead composites having a single layer planar, crystalline assembly of encoded beads embedded in a hydrophilic polymeric matrix. The composite may be unattached to a solid support. The encoded beads have different biomolecules attached to their surfaces, and the encoding permits distinguishing beads having different biomolecules attached thereto. The present invention also relates to a systematic process for the creation of functionally organized, spatially patterned assemblies of polymer-microparticle composites, including the AC electric field-mediated assembly of patterned, self-supporting organic (polymeric) films and organic-polymer-microparticle composites of tailored composition and morphology. The present invention also relates to the application of such functional assemblies in materials science and biology. Additional areas of application include sensors, catalysts, membranes, and micro-reactors, and miniaturized format for generation of multifunctional thin films.
Abstract:
The present invention relates to a systematic process for the creation of functionally organized, spatially patterned assemblies polymer-microparticle composites including the AC electric field-mediated assembly of patterned, self supporting organic (polymeric) films and organic (polymeric)—microparticle composite films of tailored composition and morphology; the present invention further relates to the incorporation of said assemblies into other structures. The present invention also relates to the application of such functional assemblies in materials science and biology. Additional areas of application include sensors, catalysts, membranes, micro-reactors, smart materials. Miniaturized format for generation of multifunctional thin films. Provides a simple set-up to synthesize thin films of tailored composition and morphology:
Abstract:
The present invention relates to a systematic process for the creation of functionally organized, spatially patterned assemblies of polymer-microparticle composites including the AC electric field-mediated assembly of patterned, self-supporting organic (polymeric) films and organic-polymer-microparticle composites of tailored composition and morphology. The present invention further relates to the incorporation of said assemblies into other structures. The present invention also relates to the application of such functional assemblies in materials science and biology. Additional areas of application include sensors, catalysts, membranes, and micro-reactors, and miniaturized format for generation of multifunctional thin films. This invention also provides simple methods and apparatus for synthesizing thin films of tailored composition and morphology.
Abstract:
This invention provides high unit density arrays of microparticles and methods of assembling such arrays. The microparticles in the arrays may be functionalized with chemical or biological entities specific to a given target analyte. The high unit density arrays of this invention are formed on chips which may be combined to form multichip arrays according to the methods described herein. The chips and/or multichip arrays of this invention are useful for chemical and biological assays.
Abstract:
This invention provides high unit density arrays of microparticles and methods of assembling such arrays. The microparticles in the arrays may be functionalized with chemical or biological entities specific to a given target analyte. The high unit density arrays of this invention are formed on chips which may be combined to form multichip arrays according to the methods described herein. The chips and/or multichip arrays of this invention are useful for chemical and biological assays.
Abstract:
This invention provides high unit density arrays of microparticles and methods of assembling such arrays. The microparticles in the arrays may be functionalized with chemical or biological entities specific to a given target analyte. The high unit density arrays of this invention are formed on chips which may be combined to form multichip arrays according to the methods described herein. The chips and/or multichip arrays of this invention are useful for chemical and biological assays.
Abstract:
This invention provides high unit density arrays of microparticles and methods of assembling such arrays. The microparticles in the arrays may be functionalized with chemical or biological entities specific to a given target analyte. The high unit density arrays of this invention are formed on chips which may be combined to form multichip arrays according to the methods described herein. The chips and/or multichip arrays of this invention are useful for chemical and biological assays.
Abstract:
This invention provides high unit density arrays of microparticles and methods of assembling such arrays. The microparticles in the arrays may be functionalized with chemical or biological entities specific to a given target analyte. The high unit density arrays of this invention are formed on chips which may be combined to form multichip arrays according to the methods described herein. The chips and/or multichip arrays of this invention are useful for chemical and biological assays.
Abstract:
Silicone hydrogel contact lenses having a high water content are described. The lenses are derived from a polymerizable composition including a first siloxane monomer represented by formula (1): wherein m of formula (1) represents one integer from 3 to 10, n of formula (1) represents one integer from 1 to 10, R1 of formula (1) is an alkyl group having from 1 to 4 carbon atoms, and each R2 of formula (1) is independently either a hydrogen atom or a methyl group; the lenses also include units derived from a second siloxane monomer having a number average molecular weight of at least 7,000 daltons, and at least one vinyl-containing cross-linking agent. The lenses have average equilibrium water contents from about 30% wt/wt to about 70% wt/wt when fully hydrated. Batches of silicone hydrogel contact lenses and methods of making silicone hydrogel contact lenses are also described.
Abstract:
Hydrogel contact lenses that are derived from a polymerizable composition including at least one hydrophilic monomer and at least one phosphine-containing component are described. The hydrogel of the contact lenses can be a silicone hydrogel or a non-silicone hydrogel. Use of polymerizable compositions comprising a phosphine-containing component can be cured under both inert and air atmospheres, and can be used to form hydrogel contact lenses having improved shape retention properties, having improved resistance to discoloration. Batches of hydrogel contact lenses and methods of making hydrogel contact lenses are also described.