Abstract:
Networked intelligent lighting devices and other elements connected to the network of a lighting system are readily adaptable to desirable networking arrangements as well as logical functional groups, for example by each storing communication provisioning data and/or configuration data for logically associating system elements into one or more groupings or sub-networks. The exemplary systems and system elements may also enable such enhanced network arrangement via autonomous discovery and device commissioning.
Abstract:
An optical/electrical transducer device has housing, formed of a thermally conductive section and an optically transmissive member. The section and member are connected together to form a seal for a vapor tight chamber. Pressure within the chamber configures a working fluid to absorb heat during operation of the device, to vaporize at a relatively hot location as it absorbs heat, to transfer heat to and condense at a relatively cold location, and to return as a liquid to the relatively hot location. The transducer device also includes a wicking structure mounted within the chamber to facilitate flow of condensed liquid of the working fluid from the cold location to the hot location. At least a portion of the wicking structure comprises semiconductor nanowires, configured as part of an optical/electrical transducer within the chamber for emitting light through and/or driven by light received via the transmissive member.
Abstract:
Lighting devices and/or systems offer dynamic control or tuning of color of light. The lighting systems utilize sources, such as solid state sources, to individually pump a number of different phosphors of types having relatively high degrees of color purity. The phosphor emissions, however, are still broader than the traditionally monochromatic color emissions of LEDs. The different phosphors can be independently excited to controllable levels, by individually controlled sources rated for emission of energy of the same spectrum. Adjustment of intensities of electromagnetic energy emitted by the sources independently adjusts levels of excitations of the phosphors selected to emit different colors of relatively high purity and thus the contributions of pure colors to the combined light output, for example, to enables color adjustment of the light output over a wide range of different selectable colors encompassing much of the gamut of visible light.
Abstract:
An antimicrobial system, including a luminaire. The luminaire includes a first disinfection light source to emit a first disinfection light in a first ultraviolet (UV) band for disinfecting an occupied space of a plurality of pathogens that are exposed to the first disinfection light, the first UV band being 200 nanometers (nm) to 250 nm principal wavelength. The luminaire also includes a second disinfection light source to emit a second disinfection light in a second UV band for disinfecting an unoccupied space of the plurality of pathogens that are exposed to the second disinfection light, the second UV band being 200 nm to 400 nm principal wavelength. The antimicrobial system also includes a disinfection light control device to generate a control signal to control emission of the first disinfection light and the second disinfection light.
Abstract:
A luminaire includes a luminaire control circuit and a disinfection light source to emit a disinfection light in an ultraviolet (UV) band for disinfecting a vicinity of a physical space of a target pathogen that is exposed to the disinfection light. The UV band is 200 nanometers (nm) to 230 nm wavelength. The luminaire receives a control signal based on at least the mounting height of the luminaire. The luminaire adjusts a UV radiation threshold limit based on the control signal. The luminaire controls, via a driver circuit, the disinfection light source over a dose cycle to emit the disinfection light continuously or during the plurality of periods for disinfecting the vicinity to substantially obtain the target pathogen UV radiation level and restrict the total UV radiation threshold exposure level by the adjusted UV radiation threshold limit based on the control signal.
Abstract:
For a programmable direct current (DC)-DC converter application, a driver system includes a switched mode power circuit for providing a DC power signal to an electrical load and a control block. Control block includes interfaces coupled to receive at least one real-time input signal from a low voltage region of the switched mode power circuit and to provide at least one control signal to the low voltage region. Control block configures the switched mode power circuit to provide the DC power signal having at least one power parameter within a tolerance of a power configuration setting value of the electrical load. Control block responds to the at least one real-time input signal from the low voltage region to adjust operation of the low voltage region via the at least one control signal. Low voltage region can include a plurality of switched converter circuits.
Abstract:
A multi-stage driver system includes a switched mode power circuit for providing a direct current (DC) power signal to an electrical load and a control block. Control block includes interfaces coupled to receive at least one real-time input signal from a high voltage region or a low voltage region of the switched mode power circuit and to provide at least one control signal to the high voltage region or the low voltage region. Control block configures the switched mode power circuit to provide the DC power signal having at least one power parameter within a tolerance of a power configuration setting value of the electrical load. Control block responds to the at least one real-time input signal from the high voltage region or the low voltage region to adjust operation of the high voltage region or the low voltage region via the at least one control signal.
Abstract:
An example of a lighting system includes intelligent lighting devices, each of which includes a light source, a communication interface and a processor coupled to control the light source. In such a system, at least one of the lighting devices includes a user input sensor to detect user activity related to user inputs without requiring physical contact of the user; and at least one of the lighting devices includes an output component to provide information output to the user. One or more of the processors in the intelligent lighting devices are further configured to process user inputs detected by the user input sensor, control lighting and control output to a user via the output component so as to implement an interactive user interface for the system, for example, to facilitate user control of lighting operations of the system and/or to act as a user interface portal for other services.
Abstract:
Examples of lighting equipment provide services to and on behalf of a biomechatronically enhanced organism and/or a biomechatronic component of the organism. Such services include charging, communications, location-related services, control, optimization, client-server functions and distributed processing functionality. The biomechatronically enhanced organism and/or biomechatronic component utilize such services provided by and/or via the lighting equipment to enable, enhance or otherwise influence operation of the organism.
Abstract:
The examples relate to various implementations of a software configurable luminaire and a transparent display device for use in such a luminaire. The luminaire is able to generate light sufficient to provide general illumination of a space in which the luminaire is installed and provide an image display. The general illumination is provided by additional light sources and/or improved display components of the transparent display device.