Abstract:
One embodiment of the present disclosure describes an electronic display. The electronic display includes a display driver that write image frames to pixels of the electronic display with a first refresh rate or a second refresh rate, in which the second refresh rate is less than the first refresh rate. Additionally, the electronic display includes a timing controller that receives image frames from an image source, in which one or more of the image frames are configured to be displayed on the display panel to play video content; determines a capture rate of the video content based at least in part on a cadence with which the image frames are received, in which the capture rate describes a rate at which each of the one or more image frames was captured by an image sensor; and instructs the display driver to write the one or more of the image frames at the second refresh when the second refresh rate is an integer multiple of the capture rate.
Abstract:
Systems, methods, and device are provided to perform refresh-rate dependent dithering. One embodiment of the present disclosure describes a computing device that includes an image source that generates spatially dithered image data and an electronic display communicatively coupled to the image source. More specifically, the electronic display receives the spatially dithered image data from the image source and determines a refresh rate with which to display an image by comparing a local histogram and an artifact histogram, in which the local histogram describes pixel grayscale distribution of a portion of the image and the artifact histogram describes a pixel grayscale distribution that when displayed will cause a perceivable artifact. Additionally, when the determined refresh rate is less than a threshold refresh rate of the electronic device, the electronic display spatially dithers the image data without temporally dithering the image data and displays the image based at least in part on the spatially dithered image data.
Abstract:
Systems and methods for operating a display by dynamically determining a refresh rate for the display. In certain implementations, a processor determines a number of pixels having medium grayscale levels from a histogram for the image. If the number does not exceed a threshold, the processor sets a refresh rate for the display to a first refresh rate. In certain implementations, if the number exceeds a threshold, the processor may set the refresh rate for the display to a second refresh rate. Moreover, the first refresh rate may be lower than the second threshold. In some implementations, the image may be analyzed by subdividing the image into blocks and determining a refresh rate based on grayscale levels or distributions in the blocks. Based on the analysis of the blocks, a corresponding refresh rate may be selected.
Abstract:
A method is provided for compensating for brightness change in a display. The method includes storing a plurality of look-up tables (LUTs), where each table has a plurality of pixel levels at a variable refresh rate (VRR) and a plurality of brightness signals that provide compensation for the brightness change when refresh rate is changed during a panel self-refresh (PSR). The method also includes receiving an input signal from a graphics processing unit (GPU) and determining the VRR of the input signal from the GPU. The method further includes obtaining the LUT at the determined VRR of the input signal and adjusting the input signal to produce an output signal that compensates for the brightness change for each pixel or sub-pixel in a timing controller based upon the LUT at the determined VRR. The method further includes transmitting the output signal to the display. A system is also provided.
Abstract:
A display may have an active area that includes display pixels. The display may include an inactive notch region that extends into the active area. Data lines may provide image data from display driver circuitry to the display pixels. The image data may include data signals that correspond to portions of the display that do not include pixels, such as the inactive notch region. The null data signals may cause nonuniformities in the displayed image. The null data signals may be adjusted to minimize the nonuniformities. Null data signals corresponding to the inactive notch region may be adjusted to have gray levels that gradually decrease with distance from the border between the inactive notch and the active area. All of the data signals corresponding to the inactive notch may be set to a uniform gray level.
Abstract:
A display may have a pixel array such as a liquid crystal pixel array. The pixel array may be illuminated by a backlight unit that includes an array of light-emitting diodes. A backlight brightness selection circuit may select brightness values for the light-emitting diodes. The backlight brightness selection circuit may select the brightness values based on image data, based on brightness values used in previous image frames, based on device information, and/or based on sensor information. The backlight brightness selection circuit may select the backlight brightness levels to mitigate visible artifacts such as flickering and halo. The backlight levels selected by the backlight brightness selection may be modified by a power consumption compensation circuit. The power consumption compensation circuit may estimate the amount of power consumption required to operate the backlight using the target brightness levels and may modify the target brightness levels to meet maximum power consumption requirements.
Abstract:
An electronic device may generate content that is to be displayed on a display. The display may have an array of liquid crystal display pixels for displaying image frames of the content. The image frames may be displayed with positive and negative polarities to help reduce charge accumulation effects. A charge accumulation tracker may analyze the image frames to determine when there is a risk of excess charge accumulation. The charge accumulation tracker may analyze information on gray levels, frame duration, and frame polarity. The charge accumulation tracker may compute a charge accumulation metric for entire image frames or may process subregions of each frame separately. When subregions are processed separately, each subregion may be individually monitored for a risk of excess charge accumulation.
Abstract:
An electronic device may be provided with a display. The display may include a backlight having an array of locally dimmable light sources. Control circuitry may provide control signals to the backlight to produce light at different brightness levels. When the brightness level is below a threshold, the control circuitry may use pulse-width-modulation control signals to control the light sources in the backlight. When the brightness level is above the brightness threshold, the control circuitry may use analog control signals to control the light sources in the backlight. The control circuitry may adjust the threshold to achieve different dimming ranges for different brightness settings. A low brightness setting, for example, may have a lower threshold and lower dimming range than a high brightness setting, which may help produce darker darks when the display operates in a low brightness setting.
Abstract:
Systems and methods reduce likelihood of hysteresis that reduces perceived image quality of a subsequent image frame by toggling the display pixels to relax the display pixels by overwriting previous image frame data. During non-emission periods of the pixels, the pixels may be pre-toggled or exercised to improve response time and accuracy of the pixel. Data for pixels being programmed may also be used to pre-toggle other pixels reducing overhead but increasing cross-talk. Since the amount of cross-talk is related to content of the pixels being pre-toggled, a line buffer may be used to store image data for the pixels being pre-toggled. This stored image data may be used to determine how much pre-compensation is to be applied to data for the pixels being programmed. In other words, an amount of compensation applied is based at least in part on the content (e.g., greyscale levels) of the image data.
Abstract:
A display may have an active area that includes display pixels. The display may include an inactive notch region that extends into the active area. Data lines may provide image data from display driver circuitry to the display pixels. The image data may include data signals that correspond to portions of the display that do not include pixels, such as the inactive notch region. The null data signals may cause nonuniformities in the displayed image. The null data signals may be adjusted to minimize the nonuniformities. Null data signals corresponding to the inactive notch region may be adjusted to have gray levels that gradually decrease with distance from the border between the inactive notch and the active area. All of the data signals corresponding to the inactive notch may be set to a uniform gray level.