Abstract:
Apparatuses, systems, and methods for high data mode operation in cellular networks. A UE may determine, for an interface to a high-speed cellular network, a categorization from a plurality of categorizations, determine availability of the high-speed cellular network, and select, based at least in part on the categorization and availability of the high-speed cellular network, the interface for a data connection to the high-speed cellular network. The categorization may be one of expensive or not expensive and/or one of a first level associated with a higher compression codec rate or a second level associated with a lower compression codec rate. The UE may receive, from one of the a low-speed cellular network or the high-speed cellular network, carrier plan information for a cellular data service carrier and analyze the carrier plan information to determine desirability of a switch, e.g., from the low-speed cellular network to the high-speed cellular network.
Abstract:
Techniques are disclosed relating to sharing access to electronically-secured property. In some embodiments, a first computing device having a first secure element receives, from a second computing device associated with an owner of the electronically-secured property, an indication that the second computing device has transmitted a token to server computing system, the token permitting a user of the first computing device access to the electronically-secured property. Based on the received indication, the first computing device sends a request for the transmitted token to the server computing system and, in response to receiving the requested token, securely stores the received token in the first secure element of the first computing device. The first computing device subsequently transmits the stored token from the first secure element of the first device to the electronically-secured property to obtain access to the electronically-secured property based on the token.
Abstract:
Methods and apparatus for user authentication and human intent verification of administrative operations for eSIMs of an eUICC included in a mobile device are disclosed. Certain administrative operations, such as import, modification, and/or export, of an eSIM and/or for an eUICCs firmware can require user authentication and/or human intent verification before execution of the administrative operations are performed or completed by the mobile device. A user of the mobile device provides information to link an external user account to an eSIM upon (or subsequent to) installation on the eUICC. User credentials, such as a user name and password, and/or information generated therefrom, can be used to authenticate the user with an external server. In response to successful user authentication, the administrative operations are performed. Human intent verification can also be performed in conjunction with user authentication to prevent malware from interfering with eSIM and/or eUICC functions of the mobile device.
Abstract:
Methods and systems are disclosed for performing seamless voice call handover and data handoff between a cellular network and a non-cellular (e.g., Wi-Fi) network, by a link budget limited user equipment device (UE) in standalone mode. The cellular radio may be maintained in a non-communication mode when not in use, to prevent power and peak power issues that may be unique to link budget limited devices. In response to poor non-cellular performance in support of a voice call, the UE may transition the cellular radio from the non-communication state to an online state. If the cellular network indicates that packet-switched calls are supported, then the UE may initiate handover of the voice call to the cellular network. Various methods for seamless handoff of data communications are also disclosed, in both the presence and the absence of a voice call. Various metrics are disclosed to enhance handoff determinations.
Abstract:
This disclosure relates to dynamic baseband management for a wireless device. The wireless device may be an accessory device. The accessory device may determine whether it has a short-range wireless communication link with a companion device. The accessory device may determine one or more proximity metrics relating to the companion device. The accessory device may further determine one or more metrics associated with user settings, user activity and/or application activity at the wireless device. The wireless device may select a (e.g., full, limited, or off) baseband operating mode based on any or all of these considerations.
Abstract:
This disclosure relates to wireless connection management for an accessory device. A companion device and the accessory device may establish a wireless link. The companion device may associate with a Wi-Fi access point. The companion device may determine whether the Wi-Fi access point supports access by the accessory device to a wide area network. The companion device may determine whether to provide association information for the Wi-Fi access point to the accessory device based at least in part on whether the Wi-Fi access point supports access by the accessory device to the wide area network. The companion device may monitor whether the Wi-Fi access point continues to support access by the accessory device to the wide area network, and may indicate to the accessory device to disassociate with the Wi-Fi access point if the Wi-Fi access point no longer supports access by the accessory device to the wide area network.
Abstract:
Methods, devices, and servers for as-needed update of a trusted list are provided herein. An electronic subscriber identity module (eSIM) server receives a request for an eSIM of a particular type from a wireless device. The eSIM server evaluates the particular type and requests an eSIM of the particular type from a second eSIM server, which is not initially trusted by a secure element (SE) of the wireless device. The eSIM server sends a policy update to the wireless device. The wireless device passes the policy update to the SE, for example, a universal integrated circuit card (UICC). The UICC updates the trusted list with an identity of the second eSIM server. When the wireless device downloads a bound profile package (BPP) containing an eSIM from the second eSIM server, the UICC validates the BPP based on the updated trusted list. The eSIM is then installed on the UICC.
Abstract:
This disclosure relates to dynamic baseband management for a wireless device. The wireless device may be an accessory device. The accessory device may determine whether it has a short-range wireless communication link with a companion device. The accessory device may determine one or more proximity metrics relating to the companion device. The accessory device may further determine one or more metrics associated with user settings, user activity and/or application activity at the wireless device. The wireless device may select a (e.g., full, limited, or off) baseband operating mode based on any or all of these considerations.
Abstract:
This disclosure relates to inter radio access technology management for audiovisual calls. Wireless link availability and suitability for an audiovisual call may be evaluated for each of a first radio access technology and a second radio access technology. One or more wireless links on which to establish an audiovisual call may be selected based on the evaluations. The audiovisual call may be established on the selected wireless link(s). Wireless link availability and suitability for an audiovisual call may be monitored during the audiovisual call and decisions on whether to perform handover to a different wireless link and/or media duplication on multiple wireless links may be made based on the suitability for an audiovisual call of available wireless links.
Abstract:
Some embodiments relate to methods for provisioning a secondary wireless device with an eSIM for wireless communication and activating multi-SIM functionality between the secondary wireless device and a primary wireless device having a subscribed SIM. The primary wireless device may act as a proxy in obtaining the eSIM for the secondary wireless device. The primary wireless device may then provide, to the cellular network, identifiers of the SIMs of the primary and secondary wireless devices. The primary wireless device may then request initiation of multi-SIM functionality for the two SIMs, and receive an indication that the multi-SIM functionality has been initiated. As an example, the multi-SIM functionality may be implemented by mapping the SIM of the primary wireless device and the SIM of the secondary wireless device (e.g., the provisioned eSIM) to the same Mobile Directory Number (MDN).