Abstract:
This disclosure relates to broadcast information block assistance for a wireless device. The wireless device may obtain a first plurality of broadcast information blocks from a first base station. The wireless device may receive a second plurality of broadcast information blocks associated with the first base station from a source other than the first base station. The wireless device may determine if the second plurality of broadcast information blocks match the first plurality of broadcast information blocks based on version information specified in the first plurality of broadcast information blocks. When the broadcast information blocks match, the wireless device may use the first and second pluralities of broadcast information blocks to perform communication with the first base station without obtaining the second plurality of information blocks from the first base station.
Abstract:
This disclosure relates to broadcast information block assistance for a wireless device. The wireless device may obtain a first plurality of broadcast information blocks from a first base station. The wireless device may receive a second plurality of broadcast information blocks associated with the first base station from a source other than the first base station. The wireless device may determine if the second plurality of broadcast information blocks match the first plurality of broadcast information blocks based on version information specified in the first plurality of broadcast information blocks. When the broadcast information blocks match, the wireless device may use the first and second pluralities of broadcast information blocks to perform communication with the first base station without obtaining the second plurality of information blocks from the first base station.
Abstract:
Apparatuses, systems, and methods for user equipment (UE) devices to perform a postponement of a data service request are described. A UE may detect a data service request failure during cell reselection and postpone a resend of the data service request based on a status of the cell reselection. The status may be an indication that the UE is attempting to camp on a cell or that the UE is monitoring one or more metrics associated with cell reselection. To postpone the data service request, the UE may postpone the data service request for a specified period of time or until the cell reselection is complete. The status may be monitored on a first layer of a protocol stack and the data service request may generated by a second layer of the protocol stack. The postponement may be for a fixed or variable time period.
Abstract:
This disclosure relates to techniques for efficient sparse network resource usage and connection release procedures. According to some embodiments, a wireless device may utilize techniques for efficiently releasing a radio resource control (RRC) connection, including techniques that avoid or reduce the occurrence of random access procedures when out-of-sync with the network when the RRC connection is being released. In some embodiments, a wireless device may utilize techniques for efficiently sparsely using network uplink resources, including techniques that avoid or reduce the occurrence of random access procedures to regain timing alignment to perform uplink communication when out-of-sync with the network.
Abstract:
This disclosure relates to techniques for UEs (including link budget limited UEs) to improve communications performance with a cellular network. A UE may be configured to provide a request (for a first process executed by the UE) for a high-bandwidth connection to a base station of a cellular network during a first RRC connection. In some embodiments, the RRC connection is established by another process. In some embodiments, the UE is configured to receive signaling from the base station indicating that the base station cannot satisfy the high-bandwidth connection request and the UE is configured not to send or receive data for the high-bandwidth connection during the first RRC connection in response to the signaling. In some embodiments, the UE is configured to re-send the request on a second, subsequent RRC connection that is not established by the first process. In some embodiments, the UE is configured to opportunistically re-send the request on subsequent RRC connections established by one or more other processes until the base station is able to grant the request.
Abstract:
This disclosure relates to techniques for scheduling radio resource control connections between a wireless device and a network element of a network in advance. According to some embodiments, a wireless device may provide an indication of one or more types of upcoming data traffic to the network element. The network element may schedule one or more radio resource control connections for the wireless device based at least in part on the indication of one or more types of upcoming data traffic. The network element may provide an indication of the scheduled radio resource control connection(s) to the wireless device. The wireless device and the network may establish the scheduled radio resource control connection at the scheduled time.
Abstract:
This disclosure relates to techniques for scheduling radio resource control connections between a wireless device and a network element of a network in advance. According to some embodiments, a wireless device may provide an indication of one or more types of upcoming data traffic to the network element. The network element may schedule one or more radio resource control connections for the wireless device based at least in part on the indication of one or more types of upcoming data traffic. The network element may provide an indication of the scheduled radio resource control connection(s) to the wireless device. The wireless device and the network may establish the scheduled radio resource control connection at the scheduled time.
Abstract:
Systems and methods for coordinating data sampling among devices include a set of electronic devices that may periodically sample energy data from a smart meter according to sample timing information. The sample timing information may specify a set of times to sample energy data for each electronic device. The set of electronic devices may take turns in sampling energy data from the smart meter so that individual electronic devices may reduce power consumption by sampling less frequently. A server may determine the sample times for the electronic devices and may instruct the electronic devices to sample energy data. Additionally, each individual electronic device may leave and/or join wireless communication networks less frequently than if each individual electronic device performed every sample. Accordingly, the coordinated sampling may decrease the radio resource usage and/or bandwidth usage of any individual electronic device.
Abstract:
Methods, devices, and apparatus to adapt operating parameters for satellite signal reception and transmission by a wireless device to mitigate effects of fading due to specular reflections are described herein. The wireless device measures received signal power levels and compares characteristics of the measurements over an observation duration to at least one fading criteria to determine whether to operate in a normal or adaptive mode. While operating in the adaptive mode, the wireless device alternates between high performance mode time periods and low performance mode time periods. The wireless device indicates to a ground station associated with the satellite in which operating mode the wireless device is operating via an uplink data message transmitted during a data cycle at the start of a high or low performance mode time period. The ground station schedules data transmissions accordingly during subsequent data cycles of the high or low performance mode time periods.
Abstract:
One or more tangible, non-transitory computer-readable media storing instructions that, when executed by one or more processors, are configured to cause the one or more processors to receive an indication of a location of an electronic device, receive credentials from a password management system of the electronic device for a preferred network and the location based on the location corresponding to the preferred network. The instructions, when executed by the one or more processors, may also cause the processors to create the preferred network and the credentials, and store the preferred network, the location, and the credentials in the password management system based on the location not corresponding to the preferred network, and communicate using the preferred network based on the credentials.