Abstract:
A magnetic field device, with a first magnet, a first ferromagnetic element positioned adjacent to the first magnet, a second magnet, a second ferromagnetic element positioned adjacent to the second magnet and relative to the first ferromagnetic element to create a gap between the first ferromagnetic element and the second ferromagnetic element, and a third magnet positioned between the first ferromagnetic element and the second ferromagnetic element and within the gap.
Abstract:
A magnetic resonance imaging (MRI) system is provided. The MRI system can include a magnetic field device to generate a magnetic field within a measurement volume and to generate a magnetic fringe field external to the measurement volume. The MRI system can include a ferromagnetic housing to envelop the magnetic field device. The housing can have a first portion and a second portion, where thickness of the first portion is different from thickness of the second portion. The MRI system can include a plate having a plate opening and positioned external to the housing at a predetermined distance from the housing. In some embodiments, the magnetic fringe field generated by the MRI system can be asymmetric with respect to a center of the measurement volume.
Abstract:
MRI/NMR systems, devices and modules thereof for T1/T2 analysis; FT spectroscopy; CW spectroscopy and 2D/3D imaging of samples, process and reactions at high temperatures and/or high pressures, comprising active and/or passive thermal insulating means as described in the description and figures.
Abstract:
A magnetic resonance system, useful for imaging a patient, comprising: (a) a magnetic resonance device (MRD) for imaging a patient, comprising an open bore, the MRD at least partially contained in an envelope comprising in its circumference at least one recess; and, (b) an MRI-safe cart made of MRI-safe material, comprising a substantially horizontal base and at least one substantially horizontal incubator above the base, the base and the incubator are interconnected by at least one pillar. At least a portion of the cart and the MRD are configured to fit together such that at least a portion of the incubator is reversibly housed within the MRD, and further at least a portion of the base is reversibly housed within at least one recess.
Abstract:
A neonate incubator for positioning a neonate within a magnetic resonance imaging (MRI) device is provided. The neonate incubator can include: a proximal end and a distal end; a radio frequency (RF) shielding door coupled to the distal end, the RF shielding door to mate with a bore of the MRI device to provide RF shielding; and a RF channel that extends along an axis that is substantially parallel to a longitudinal axis of the neonate incubator from an interior chamber of the neonate incubator through the RF shielding door, the RF channel having a length to width ratio of at least 5 to 1.
Abstract:
The present invention provides an imaging system having an imaging device for imaging at least a portion of an animal; said imaging device selected from a group consisting of X-ray computed tomography (CT), positron emission tomography (PET), single-photon emission computed tomography (SPECT), fluorescence and phosphorescence microscopy (FPM) and any combination thereof; consisting of CT, computer-assisted tomography; IR, rendered images comprising infrared light spectroscopy; PET, positron emission tomography; fluorescence and phosphorescence microscopy, a Raman spectroscopic imaging system, ultrasound and any combination thereof.
Abstract:
A maneuverable RF coil assembly, useful for being maneuvered at both positions: (i) over at least a portion of a neonate immobilized within a cradle at time of MR imaging; and (ii) below or aside the cradle when it is not required for imaging. The maneuverable RF coil assembly comprises at least one RF coil and maneuvering mechanism. The maneuvering mechanism comprises both: (i) a linear reciprocating mechanism for approaching or otherwise drawing away at least one coil to and from the neonate; and (ii) tilting mechanism for placing at least one coil away from the neonate.
Abstract:
A method for automatic determination of optimal Magnetic Resonance Imaging (MRI) acquisition parameters for imaging in an MRI instrument a sample containing two types of tissue, tissue A and tissue B, wherein said method comprises: determining T1A, T2A, T1B, T2B, ρA, and ρB, where ρ represents the density of NMR-active nuclei being probed; setting initial values of TR and TE; determining the signal intensities SA and SB from the equation S=ρE1E2, where E1=1−e−TR/T1 and E2=e−TE/T2; calculating the contrast-to-noise ratio for tissue A in the presence of tissue B (CNRAB) from the equation CNR AB = P ( S A - S B ) T R , where P is a proportionality constant; and, determining optimal values of TR and TE that yield a maximum value of CNRAB(TR,TE). In other embodiments of the invention, the method includes optimization of additional acquisition parameters. An MRI system in which the method is implemented so that acquisition parameters can be optimized without any intervention by the system operator is also disclosed.
Abstract:
Devices and methods for providing an adjustable open-bore magnetic resonance device (MRD) that enable personalized accommodation for users of different sizes. The MRD includes a first main magnetic source and a second main magnetic source in a face-to-face orientation. The magnetic sources are separated by a distance that is adjustable by way of an endoskeletal height adjuster. In some embodiments, a superconducting electromagnet coiled around an oval defines the magnetic volume of interest. In such embodiments, the perimeter of the oval includes a plurality of trapezoid elements housing the coil of the electromagnet, and the trapezoid elements can be moved outwards and inwards relative to the oval's center in the plane of the oval.
Abstract:
A thermo-isolating jacket for a magnetic resonance device (MRD). The thermo-isolating jacket is configured to be positioned in an atmospheric pressure, temperature changing environment. The thermo-isolating jacket provides a passive temperature insulating device to be placed on the outer side of the MRD. The thermo-isolating jacket insulates the MRD from external environment temperature fluctuations during its operation.