摘要:
The present invention is an optical waveform shaper that utilizes a plurality of interferometers. Each interferometer has one of two types of transfer functions. One type is a first transfer function characterized as having a positive second order derivative of the output optical power in respect to the input optical power. Another type is a second transfer function characterized as having a negative second order derivative of the output optical power in respect to the input optical power. The characteristics of both the first transfer function and the second transfer function are actualized when the input optical power is in the neighborhood of zero and the output optical power shows substantially periodic change with respect to the input optical power. At least one of the plurality of interferometers uses the second transfer function.
摘要:
An optical receiver comprises branching units for branching and supplying the signal lights to be inputted to the first to fourth optical waveguides provided on a substrate, second to third optical waveguides for giving delay time differences corresponding to a symbol of the DMPSK modulated signal, a demodulating unit for demodulating two light signals through interference of signal lights between the first to second optical waveguides and between the third to fourth optical waveguides, two optical detectors for converting two light signals from the demodulating unit, and a light path length varying unit for identically varying each light path length of two optical waveguides being arranged through selection of combinations of the first and third optical waveguides, the first and fourth optical waveguides, and the second and third optical waveguides in one region when the wavelength of the signal light is varied.
摘要:
By using low-frequency signals, an optical transmitting unit modulates one of a wavelength, a transmission timing, and an intensity of light as a carrier wave. A polarization multiplexer synthesizes the output light signals, modulated by the optical transmitting unit, in polarization states orthogonal to each other and generates polarization-multiplexing signals. A polarization splitter splits by extracting two orthogonal polarization components from the polarization-multiplexing signals. The polarization states of the polarization-multiplexing signals are controlled by a polarization controller in an optical receiving unit. A band-pass filter extracts components transmitting through passbands from output signals of the optical receiving unit and outputs an intensity of the components. Based on the intensity output from the filter, a controlling circuit generates feedback control signals for maximizing a ratio of the components of the low-frequency signals and by using the feedback control signals, the polarization controller controls the polarization states of the optical multiplexing signals.
摘要:
By using low-frequency signals, an optical transmitting unit modulates one of a wavelength, a transmission timing, and an intensity of light as a carrier wave. A polarization multiplexer synthesizes the output light signals, modulated by the optical transmitting unit, in polarization states orthogonal to each other and generates polarization-multiplexing signals. A polarization splitter splits by extracting two orthogonal polarization components from the polarization-multiplexing signals. The polarization states of the polarization-multiplexing signals are controlled by a polarization controller in an optical receiving unit. A band-pass filter extracts components transmitting through passbands from output signals of the optical receiving unit and outputs an intensity of the components. Based on the intensity output from the filter, a controlling circuit generates feedback control signals for maximizing a ratio of the components of the low-frequency signals and by using the feedback control signals, the polarization controller controls the polarization states of the optical multiplexing signals.
摘要:
An optical sender is disclosed that operates in a Differential Quadrature Phase Shift Keying modulation scheme for high speed optical transmission and is capable of performing logical calculations at a low speed. The optical sender transmits a Differential Quadrature Phase Shift Keying (DQPSK) signal generated with modulation signals ρk and ηk so that a signal directly output from a signal receiver corresponding to the optical sender is in agreement with data signals Ik and Qk to be transmitted. The signal receiver is capable of modulation by DQPSK, and the modulation signals ρk and ηk are precoded by using the data signals Ik and Qk and the modulation signals one symbol earlier (ρk−1 and ηk−1) . The optical sender includes plural precoders that perform logical calculation simultaneously and in parallel on plural data signals one period after another period.
摘要:
An optical signal reception device is disclosed that receives and demodulates an optical signal modulated by DQPSK and performs logical inversion and other controls to transit to the object reception state. The signal reception device includes a front end including a delay interferometer and an opto-electric conversion element that receive the DQPSK optical signal and convert it into an in-phase signal and a quadrature-phase signal, a clock regenerator that regenerates a clock signal based on the in-phase signal and the quadrature-phase signal, a multiplexer that multiplexes the in-phase signal and the quadrature-phase signal, a reception frame processing unit that detects frame synchronization based on the signal multiplexed by the multiplexer and de-maps the received frames, and a controller that, based on out-of-frame-synchronization information (LOF/OOF) from the reception frame processing unit, performs logical inversion control in the clock regenerator, multiplexing timing control in the multiplexer, and controls the delay interferometer in the front end so as to transit to the object reception state.
摘要:
An optical sender is disclosed that operates in a Differential Quadrature Phase Shift Keying modulation scheme for high speed optical transmission and is capable of performing logical calculations at a low speed. The optical sender transmits a Differential Quadrature Phase Shift Keying (DQPSK) signal generated with modulation signals ρk and ηk so that a signal directly output from a signal receiver corresponding to the optical sender is in agreement with data signals Ik and Qk to be transmitted. The signal receiver is capable of modulation by DQPSK, and the modulation signals ρk and ηk are precoded by using the data signals Ik and Qk and the modulation signals one symbol earlier (ρk−1 and ηk−1) . The optical sender includes plural precoders that perform logical calculation simultaneously and in parallel on plural data signals one period after another period.
摘要翻译:公开了一种用于高速光传输的差分正交相移键控调制方案的光发送器,并能够以低速进行逻辑运算。 光发送器发送使用调制信号rho和k和k进行生成的差分正交相移键控(DQPSK)信号,使得从与信号接收器对应的信号接收器直接输出的信号 光发送器与要发送的数据信号I SUB和Q N k一致。 该信号接收机能够通过DQPSK进行调制,并且通过使用数据信号I SUB和/或其调制信号对调制信号进行预编码 并且调制信号先前有一个符号(rho-k-1和eta-k-1)。 光发送器包括多个预编码器,这些预编码器在一个周期之后的一个周期上同时并行并行地执行多个数据信号。
摘要:
A phase shift unit provides a prescribed phase difference (π/2, for example) between a pair of optical signals transmitted via a pair of arms constituting a data modulation unit. A low-frequency signal f0 is superimposed on one of the optical signals. A signal of which phase is shifted by π/2 from the low-frequency signal f0 is superimposed on the other optical signal. A pair of the optical signals is coupled, and a part of which is converted into an electrical signal by a photodiode. 2f0 component contained in the electrical signal is extracted. Bias voltage provided to the phase shift unit is controlled by feedback control so that the 2f0 component becomes the minimum.
摘要:
An optical signal reception device is disclosed that receives and demodulates an optical signal modulated by DQPSK and performs logical inversion and other controls to transit to the object reception state. The signal reception device includes a front end including a delay interferometer and an opto-electric conversion element that receive the DQPSK optical signal and convert it into an in-phase signal and an orthogonal signal, a clock regenerator that regenerates a clock signal based on the in-phase signal and the orthogonal signal, a multiplexer that multiplexes the in-phase signal and the orthogonal signal, a reception frame processing unit that detects frame synchronization based on the signal multiplexed by the multiplexer and de-maps the received frames, and a controller that, based on out-of-frame-synchronization information (LOF/OOF) from the reception frame processing unit, performs logical inversion control in the clock regenerator, multiplexing timing control in the multiplexer, and controls the delay interferometer in the front end so as to transit to the object reception state.
摘要:
An optical signal reception device is disclosed that receives and demodulates an optical signal modulated by DQPSK and performs logical inversion and other controls to transit to the object reception state. The signal reception device includes a front end including a delay interferometer and an opto-electric conversion element that receive the DQPSK optical signal and convert it into an in-phase signal and a quadrature-phase signal, a clock regenerator that regenerates a clock signal based on the in-phase signal and the quadrature-phase signal, a multiplexer that multiplexes the in-phase signal and the quadrature-phase signal, a reception frame processing unit that detects frame synchronization based on the signal multiplexed by the multiplexer and de-maps the received frames, and a controller that, based on out-of-frame-synchronization information (LOF/OOF) from the reception frame processing unit, performs logical inversion control in the clock regenerator, multiplexing timing control in the multiplexer, and controls the delay interferometer in the front end so as to transit to the object reception state.