Abstract:
A current sensor integrated circuit includes a lead frame having a primary conductor and at least one secondary lead, a semiconductor die disposed adjacent to the primary conductor, an insulation structure disposed between the primary conductor and the semiconductor die, and a non-conductive insulative material enclosing the semiconductor die, the insulation structure, a first portion of the primary conductor, and a first portion of the at least one secondary lead to form a package. The first portion of the at least one secondary lead (between a first end proximal to the primary conductor and a second end proximal to the second, exposed portion of the at least one secondary lead) has a thickness that is less than a thickness of the second, exposed portion of the least one secondary lead. A distance between the second, exposed portion of the primary conductor and the second, exposed portion of the at least one secondary lead is at least 7.2 mm.
Abstract:
Systems and methods described herein are directed towards differential current sensing a current sensor having two or more magnetic field sensing elements that are oriented to sense a magnetic field generated by a current through an external conductor in the same direction. The current sensor can be positioned such that at least one first magnetic field sensing element is vertically aligned with the external conductor and at least one second magnetic field sensing element is not vertically aligned with the external conductor. The magnetic field sensing elements may be spaced from each to measure a gradient field and can generate a magnetic field signal indicative of a distance between the respective magnetic field sensing element and the current carrying external conductor. A difference between the magnetic field signals can be determined that is indicative of the current through the external conductor.
Abstract:
A current sensor includes a ferromagnetic core having a substantially central opening for receiving a current conductor and a gap. A detector of the current sensor includes at least one first magnetic field sensing element disposed in a first gap portion and configured to generate a respective first magnetic field signal in response to a first magnetic field having a first angle with respect to the at least one first magnetic field sensing element. The detector also includes at least one second magnetic field sensing element disposed in a second gap portion and configured to generate a respective second magnetic field signal in response to a second magnetic field having a second angle with respect to the at least one second magnetic field sensing element. The first and second magnetic fields are substantially equal in magnitude and the first and second angles are substantially opposite in polarity.
Abstract:
Methods and apparatus for providing an integrated circuit having a drive current source, a magnetic sensing element coupled to the drive current source, the magnetic sensing element having first and second differential outputs, and first and second current elements to provide respective currents in relation to the drive current source, wherein the first current element is coupled to the first differential output and the second current element is coupled to the second differential output. In illustrative embodiments, an IC output can output a voltage corresponding to the currents of the first and second current elements.
Abstract:
Methods and apparatus to provide an integrated circuit having a magnetic sensing element having differential first and second outputs and an input, the input to receive current and first and second switches coupled to a respective one of the differential first and second outputs. A first voltage source is coupled between the first and second switches, the first and second switches having a first state in which the first voltage source is coupled across the differential first and second outputs, and an IC output can output a voltage corresponding to the first voltage source when the first and second switches are in the first state for monitoring operation of a signal path from the magnetic sensing element to the IC output.