Abstract:
A hermetically sealed displacement sensor has strain gauges placed on thin flexible triangular shaped beams of a load beam cell. The strain gauges are enclosed in a hermetically sealed cavity which cavity is sealed by means of a cover plate placed over the load beam cell. The thin beams are connected together by a center hub and basically form two constant moment beams. There is a top isolation diaphragm member which is convoluted and to which a force is applied which applied force is transmitted to the thin flexible beams. The beams deflect and the sensors produce an output proportional to strain. The sensors on each beam are two in number wherein one sensor is placed in a longitudinal direction with respect to the beam while the other sensor is in a transverse position. The sensors may be wired to form a full Wheatstone bridge or half bridges may be employed. The electrical output from the strain gauge bridge is proportional to the deflection of the center of the sensor.
Abstract:
A semiconductor chip for use in fabricating pressure transducers, including: a semiconductor wafer having a top and a bottom surface, a layer of an insulating material formed on the top surface, the bottom surface having at least two recesses of substantially equal dimensions and spaced apart, the recesses providing first and second substantially equal thin active areas, which areas deflect upon application to a force applied to the top surface, a first plurality of piezoresistive devices arranged in a given pattern and positioned on the insulating material and located within the first area, a second equal plurality of piezoresistive devices arranged in the identical pattern and located on the insulating material within the second active area, first connecting means for connecting the first plurality of piezoresistive devices in a first array, second connecting means for connecting the second plurality of piezoresistive devices in a second array corresponding to the first array.
Abstract:
A gas density transducer including: a piezoresistive bridge sensor operative to provide an output indicative of an applied pressure, a computing processor having multiple inputs and at least one output, with the output of the bridge sensor coupled to an input of the processor; a temperature sensor coupled to an input of the processor for providing at an output a signal indicative of a temperature of the bridge sensor, the output of the temperature sensor coupled to an input of the processor; and, at least one memory accessible by the processor and having stored therein: compensation coefficients for compensating the output of the bridge sensor for temperature variation; gas specific coefficients of the Van der Waal's equation; and, code for providing at an output of the processor a signal indicative of a gas density when the bridge is subjected to a gas containing environment.
Abstract:
A pressure sensor including: a deflectable diaphragm including a substantially central boss and channel; and, an optical waveguide having first and second arms, wherein the first arm is substantially aligned with an edge of the boss and the second arm is substantially aligned with an edge of the channel.
Abstract:
A system for sensing at least one physical characteristic associated with an engine including a turbine having a plurality of blades turning inside a casing, the system including: a pressure sensor coupled substantially adjacent to the casing and including at least one output; a port in the turbine casing for communicating a pressure indicative of a clearance between the blades and casing to the pressure sensor; a cooling cavity substantially surrounding the pressure sensor; and, an inlet for receiving fluid from the engine and feeding the fluid to the cooling cavity to cool the pressure sensor; wherein, the pressure sensor output is indicative of the clearance between the blades and casing.
Abstract:
A sensor is described, which basically consists of a leadless high sensitivity differential transducer chip which responds to both static and dynamic pressure. Located on the transducer are two sensors. One sensor has a thicker diaphragm and responds to both static and dynamic pressure to produce an output indicative of essentially static pressure, the static pressure being of a much higher magnitude than dynamic pressure. The other sensor has a thinner diaphragm and has one side or surface responsive to both static and dynamic pressure. The other side of the differential sensor or transducer structure has a long serpentine reference tube coupled to the underneath of the diaphragm. The tube only allows static pressure to be applied on the underside of the diaphragm and because of the natural resonance frequency of the tube, the dynamic pressure is suppressed and does not, in any manner, interface with the sensor or transducer having a thinned diaphragm. Thus, the thinned diaphragm differential unit provides an output which is indicative of the dynamic pressure, as the static pressure applied to both the top and bottom surfaces of the transducer sensor is cancelled.
Abstract:
A transducer is implemented to operate with transmitted frequency signals. These transmitted signals provide a bias potential to the transducer and enable the transducer to transmit a transducer output signal to a remote location. The transducer has an antenna for receiving transmitted signals. The antenna is coupled to a rectifier circuit; the rectifier circuit is operative to provide a DC voltage in response to said received transmitted signals. This DC voltage is applied to the piezoresistive array via a switching arrangement coupled between the array and the rectifier circuit. An interface circuit controls the switching arrangement to enable DC bias to be applied to the array in a first mode and to remove the bias in a second mode.
Abstract:
A pressure transducer apparatus including: first and second pluralities of piezoresistors each coupled in Wheatstone bridge configurations, wherein the bridges are coupled together to provide a first output being indicative of a differential pressure; and, a third plurality of piezoresistors coupled in a Wheatstone bridge configuration and being suitable for providing a second output being indicative of an absolute line pressure. A compensator may be employed for adjusting the first output for line pressure variation responsively to the second output.