Abstract:
A formulation for use as a lost circulation preventive material is a cement-forming aqueous fluid comprising water, a viscoelastic surfactant (VES), a monovalent or multivalent salt, a magnesium powder, a retarder, a weighting material, and a dispersant. The formulation is used in a method of drilling into a subterranean formation that includes introducing into a wellbore passing at least partially through the subterranean formation the cement-forming aqueous fluid, and further increasing the viscosity of the aqueous fluid with the VES, where the monovalent salt is present in an amount effective to pseudo-crosslink the elongated VES micelles to further increase the viscosity of fluid. The formulation further forms a cement by reacting the magnesium powder and the water which reaction is retarded by the retarder. The water may be saline water. When the fluid density is greater than 14 pounds per gallon, a dispersant is required, such as a sulfonated copolymer.
Abstract:
Methods of fabricating polycrystalline diamond include functionalizing surfaces of carbon-free nanoparticles with one or more functional groups, combining the functionalized nanoparticles with diamond nanoparticles and diamond grit to form a particle mixture, and subjecting the particle mixture to high pressure and high temperature (HPHT) conditions to form inter-granular bonds between the diamond nanoparticles and the diamond grit. Cutting elements for use in an earth-boring tool include a polycrystalline diamond material formed by such processes. Earth-boring tools include such cutting elements.
Abstract:
Magnetic materials, such as ferrofluids, are known to produce large amounts of heat per unit volume. Other magnetic materials include iron, iron oxide, iron carbide, iron nitride, cobalt-nickel alloy, iron-platinum alloy, cobalt-platinum alloy, iron-molybdenum alloy, iron-palladium alloy, cobalt ferrite, and combinations thereof. These magnetic materials may be absorbed onto a graphene-like component or may be encapsulated by a graphene-like component to give thermal particles. These thermal particles may in turn be suspended in a carrier fluid such as water and/or brine to give a heat transfer fluid that may be used for the dissipation of heat in downhole and subterranean environments, particularly for enhanced oil recovery (EOR) processes, including, but not necessarily limited to, carbon dioxide (CO2) flooding and alternatives to steam-assisted gravity drainage (SAGD). The magnetic materials may be excited by induction heating.
Abstract:
Coated diamond particles have solid diamond cores and at least one graphene layer. Methods of forming coated diamond particles include coating diamond particles with a charged species and coating the diamond particles with a graphene layer. A composition includes a substance and a plurality of coated diamond particles dispersed within the substance. An intermediate structure includes a hard polycrystalline material comprising a first plurality of diamond particles and a second plurality of diamond particles. The first plurality of diamond particles and the second plurality of diamond particles are interspersed. A method of forming a polycrystalline compact includes catalyzing the formation of inter-granular bonds between adjacent particles of a plurality of diamond particles having at least one graphene layer.