Abstract:
A testing method for identification whether a cancer patient is a member of a group or class of cancer patients that are not likely to benefit from administration of a platinum-based chemotherapy agent, e.g., cisplatin, carboplatin or analogs thereof, either alone or in combination with other non-platinum chemotherapy agents, e.g., gemcitabine and paclitaxel. This identification can be made in advance of treatment. The method uses a mass spectrometer obtaining a mass spectrum of a blood-based sample from the patient, and a computer operating as a classifier and using a stored training set comprising class-labeled spectra from other cancer patients.
Abstract:
A testing method for identification whether a cancer patient is a member of a group or class of cancer patients that are not likely to benefit from administration of a platinum-based chemotherapy agent, e.g., cisplatin, carboplatin or analogs thereof, either alone or in combination with other non-platinum chemotherapy agents, e.g., gemcitabine and paclitaxel. This identification can be made in advance of treatment. The method uses a mass spectrometer obtaining a mass spectrum of a blood-based sample from the patient, and a computer operating as a classifier and using a stored training set comprising class-labeled spectra from other cancer patients.
Abstract:
A mass-spectral method is disclosed for determining whether breast cancer patient is likely to benefit from a combination treatment in the form of administration of a targeted anti-cancer drug in addition to an endocrine therapy drug. The method obtains a mass spectrum from a blood-based sample from the patient. The spectrum is subject to one or more predefined pre-processing steps. Values of selected features in the spectrum at one or more predefined m/z ranges are obtained. The values are used in a classification algorithm using a training set comprising class-labeled spectra and a class label for the sample is obtained. If the class label is “Poor”, the patient is identified as being likely to benefit from the combination treatment. In a variation, the “Poor” class label predicts whether the patient is unlikely to benefit from endocrine therapy drugs alone, regardless of the patient's HER2 status.