Abstract:
A touch screen includes a first substrate; a touch sensing structure including a first touch layer and a second touch layer; a first flexible circuit board and a second flexible circuit board, wherein the first touch layer and the second touch layer are respectively provided on both sides of the first substrate, the first touch layer includes at least one first electrode lead wire, and the second touch layer comprises at least one second electrode lead wire, the first flexible circuit board and the second flexible circuit board are respectively pressed on both sides of the first substrate, the first electrode lead wire is electrically connected with the first flexible circuit board, and the second electrode lead wire is electrically connected with the second flexible circuit board.
Abstract:
A touch screen and a fabricating method thereof and a touch device are provided. The touch screen comprises: a substrate, a touch electrode layer positioned above the substrate, and an organic insulating layer positioned beneath the touch electrode layer. At least a peripheral area of the touch electrode layer comprises a hollow area having a hollow pattern. The hollow area is at least arranged in an area where the peripheral area overlaps with the organic insulating layer. The hollow pattern allows the organic insulating layer to be partially exposed and allows the touch electrode layer to maintain electrical communication. The fabricating method of the touch screen comprises: forming an organic insulating layer above a substrate; and forming a touch electrode layer above the organic insulating layer.
Abstract:
The present disclosure provides a touch screen and a method for manufacturing the touch screen as well as a display device. The touch screen comprises a substrate, a conductive film layer and an insulating layer which are sequentially stacked, wherein the insulating layer is provided, on its surface away from the substrate, with protruding structures that are configured to increase the area of the surface of the insulating layer.
Abstract:
The present disclosure relates to a touch screen, a manufacturing method thereof and a display device. The touch screen comprises: a glass substrate, a touch functional layer on the glass substrate, a white ink frame on the touch functional layer, and a black ink layer partially covering the white ink frame. The black ink layer has an extension portion extending away from the white ink frame along the touch functional layer. The extension portion has a via hole for electrically connecting to the touch functional layer. In this case, by adding a black ink layer on the white ink frame and fabricating a via hole structure in the extension portion of the black ink layer, an electrical connection with the touch functional layer is achieved.
Abstract:
The present invention provides a touch glove and smart wearable system, wherein a contact area, at least one touch area, a control module and a signal transmission module are disposed on the glove body; when the touch area is touched by the contact area, a control signal is generated and transmitted to a corresponding smart device, controlling it to perform a corresponding operation. Thus, control over the smart device may be achieved by only making one part of the touch glove touch another part without directly contacting the smart device, which is especially convenient when the smart device is inconvenient to be directly contacted; meanwhile operations over a plurality of smart devices may be integrated into the touch glove, control over each smart device may be achieved by only moving fingers instead of moving the smart device and the arms, and even blind operation may be achieved without using eyes.
Abstract:
The present disclosure provides a substrate and a display device. The substrate includes an internal region and a peripheral region surrounding the internal region, a plurality of signal wires and at least one ground wire being included in the peripheral region; any two adjacent signal wires, as well as the signal wire and the ground wire which are adjacent to each other, are connected through a selective connection structure; and the selective connection structure is capable of being connected in case of electro-static discharge. In the substrate and the display device provided by the present disclosure, because static electricity in each signal channel inside the substrate can be finally discharged via the ground wire in case of ESD, ESD protection for each signal channel in the internal region and the signal wire connected thereto can be achieved.
Abstract:
The present invention provides a frame assembly, which comprises a first frame and a second frame provided to surround the first frame. The first frame and the second frame are configured to support mesh fabric therebetween.
Abstract:
The present disclosure provides a method for manufacturing a touch panel, the touch panel, a touch screen and a display device. The method includes steps of: forming, on a transparent substrate, a non-opaque film layer with a micro-pattern; and forming a touch panel electrode on the non-opaque film layer. The non-opaque film layer is configured to vanish a shadow of the touch panel electrode.
Abstract:
There is provided in the present disclosure backlight module, comprising: a backplate; a backlight source and an optical component disposed on the backplate; a frame configured to fix the backlight source and the optical component, wherein at the top of the frame is provided a cover which is integrally formed with the frame and extends to a middle part of the backlight module.
Abstract:
The present disclosure provides a touch panel and a display device. The touch panel includes a conductive layer which includes first electrode layers parallel arranged in columns in a Y-axis direction and second electrode layers parallel arranged in rows in an X-axis direction. Each first electrode layer includes first pattern electrodes sequentially connected, and each second electrode layer includes second pattern electrodes sequentially connected. Each first pattern electrode is of a hexagonal shape. The second pattern electrodes are arranged at a region between two adjacent columns of the first electrode layers. A projection of a connection end between two adjacent second pattern electrodes in an identical row onto a plane parallel to the conductive layer partially overlaps a projection of a connection end between two adjacent first pattern electrodes in an identical column which are arranged adjacent to the two adjacent second pattern electrodes in an identical row.