Abstract:
Disclosed are a display substrate and a display apparatus. The display substrate includes a display region, an opening region located in the display region, and a frame region located between the display region and the opening region. The frame region at least includes a first isolation region, and the first isolation region includes at least one signal line group and at least one organic insulation layer which are stacked. At least two first isolation grooves are disposed in the at least one organic insulation layer, the at least two first isolation grooves are disposed at intervals along a direction away from the opening region, and an orthographic projection of the signal line group in the frame region is located between orthographic projections of the at least two first isolation grooves in the frame region.
Abstract:
A touch structure includes at least one touch functional layer group and at least one protective pad layer. The at least one touch functional layer group includes an organic layer and a conductive layer that are sequentially stacked. The at least one protective pad layer is arranged in one-to-one correspondence with the at least one touch functional layer group. A protective pad layer is located between a conductive layer and an organic layer of a corresponding touch functional layer group. An orthographic projection of the protective pad layer on the organic layer at least partially overlaps with an orthographic projection of the conductive layer on the organic layer.
Abstract:
Disclosed are an optical sensing pixel circuit and a driving method therefor, and a sensor and a display panel. The optical sensing pixel circuit includes: a photodiode which is used for detecting an external optical signal and converting the optical signal into an electric signal; an amplification circuit which is electrically connected to the photodiode and used for amplifying the electric signal into a detectable large-current signal; and a constant current bias circuit which is electrically connected to an output end of the amplification circuit and used for providing a constant current for the amplification circuit so as to set a quiescent operating point having the same current as the constant current for the amplification circuit, such that the amplification circuit amplifies the electric signal on the basis of the quiescent operating point.
Abstract:
The display substrate comprises: a flexible substrate having a display area and a peripheral area located on at least one side of the display area, wherein the peripheral area sequentially comprises a wiring area, a bending area and a pad area along a direction away from the display area; a first electrical structure on a side of the bending area away from the pad area; a second electrical structure located in the pad area; wherein the flexible substrate comprises: a first flexible substrate; a second flexible substrate and a wiring, wherein the wiring have a first portion in the wiring area, a second portion in the bending area, and a third portion in the pad area, wherein the first electrical structure is connected to the first portion, and the second electrical structure is connected to the third portion.
Abstract:
A display panel has an active area, and the active area has a camera region. The display panel includes a base, an insulating layer, and a plurality of transparent wirings. The insulating layer is disposed on the base. The insulating layer is provided with a plurality of first grooves located in the camera region. An included angle between a groove wall of a first groove and a surface on which an opening of the first groove is located is less than 90 degrees. The plurality of transparent wirings are disposed on groove walls of the plurality of first grooves.
Abstract:
A display panel includes an under screen camera display area and a normal display area surrounding the under screen camera display area, a plurality of switch assemblies are positioned at the normal display area, and a plurality of sub-pixels are positioned at the under screen camera display area. The display panel includes an insulating layer group and a plurality of connection lines; a plurality of trenches are positioned on the insulating layer group and extend from the sub-pixels to the switch assemblies; and at least part of the connection lines is positioned in the trench to reduce spacing distance between two adjacent connection lines, where the connection lines are connected between the switch assemblies and the sub-pixels.
Abstract:
The present disclosure provides a display panel including: a substrate and a cover plate, disposed oppositely; a plurality of drive transistors, a plurality of reading transistors and a plurality of Schottky photodiodes, which are disposed on the substrate and located at a side of the substrate facing toward the cover plate; each of the Schottky photodiodes includes a photosensitive active layer and an interdigital electrode layer, the interdigital electrode layer is disposed on the photosensitive active layer and includes at least one first interdigital electrode and at least one second interdigital electrode spaced apart, each of the at least one first interdigital electrode is connected to a corresponding one of the reading transistors, and each of the at least one second interdigital electrode is connected to a bias signal terminal; a plurality of light-emitting units, disposed between the substrate and the cover plate and connected to the drive transistors one-to-one.
Abstract:
A display panel, a method for manufacturing the same and a display device are provided. The display panel includes a substrate and a packaging layer. An edge of a first side of the packaging layer has a first slope. Touch lines are disposed on a side of the packaging layer away from the substrate, an extending direction of at least a portion of the touch lines is crossed with an extending direction of the edge of the packaging layer with the first slope. The touch lines include first lines, second lines and a first insulating layer. The second lines are electrically coupled to the first lines through vias in the first insulating layer. An orthographic projection of at least a portion of the first lines on the substrate is not overlapped with an orthographic projection of a portion of the packaging layer with the first slope on the substrate.
Abstract:
The present invention provides a flexible display substrate and a manufacturing method thereof, and a flexible display device, and belongs to the field of flexible display technology. The present invention can solve the problem that the display structure in the existing flexible display substrate is likely to be damaged at the time of laser lift-off. The flexible display substrate of the present invention comprises: a flexible base and a display structure, and a reflective layer provided between the flexible base and the display structure. The manufacturing method of a flexible display substrate of the present invention comprises: forming a flexible material layer on a base; forming a reflective layer on the flexible material layer; forming a display structure; separating the flexible material layer from the base by means of laser lift-off to obtain the flexible display substrate.
Abstract:
The present invention provides a low-temperature polysilicon thin film transistor and a manufacturing method thereof, an array substrate and a manufacturing method thereof, and a display device. The present invention is related to display technology. The low-temperature polysilicon thin film transistor comprises: an active layer disposed on a substrate, and a source electrode and a drain electrode respectively connected to the active layer, the active layer comprises a source contact region, a drain contact region, and a semiconductor region disposed between the source contact region and the drain contact region, the source contact region and the drain contact region are both conductive, both of the source contact region and the drain contact region include a semiconductor substrate and ions distributed in the semiconductor substrate, the source electrode covers the source contact region directly, and the drain electrode covers the drain contact region directly.