Abstract:
A method facilitates the doping of fins of a semiconductor device that includes a substrate. The method includes forming fin structures on the substrate, where each of the fin structures includes a cap formed on a fin. The method further includes performing a first tilt angle implant process to dope a first one of the fins with n-type impurities and performing a second tilt angle implant process to dope a second one of the fins with p-type impurities.
Abstract:
In many packetized communication networks, it is not feasible to obtain exact counts of traffic (OD counts) between specific origin-destination node pairs, because the link counts that are readily obtainable at router interfaces are aggregated indiscriminately over OD pairs. The best that can be done is to make a probabilistic inference concerning the OD counts from the observed link counts. Such an inference relies upon a known linear relationship between observed link counts and unknown OD counts, and a statistical model describing how the values of the OD and link counts are probabilistically distributed. Disclosed is an improved method for making such inferences. The disclosed method takes explicit account of past data when forming a current estimate of the OD counts. As a consequence, behavior that evolves in time is described with improved accuracy and smoothness.
Abstract:
A method of manufacturing a semiconductor device comprises steps of: (a) providing a semiconductor substrate comprising an upper, tensilely strained lattice semiconductor layer and a lower, unstressed semiconductor layer; and (b) forming at least one MOS transistor on or within the tensilely strained lattice semiconductor layer, wherein the forming comprises a step of regulating the drive current of the at least one MOS transistor by adjusting the thickness of the tensilely strained lattice semiconductor layer. Embodiments include CMOS devices formed in substrates including a strained Si layer lattice-matched to a graded composition Si—Ge layer, wherein the thickness of the strained Si layer of each of the PMOS and NMOS transistors is adjusted to provide each transistor type with maximum drive current.
Abstract:
A method of forming fins for a double-gate fin field effect transistor (FinFET) includes forming a second layer of semi-conducting material over a first layer of semi-conducting material and forming double caps in the second layer of semi-conducting material. The method further includes forming spacers adjacent sides of each of the double caps and forming double fins in the first semi-conducting material beneath the double caps. The method also includes thinning the double fins to produce narrow double fins.
Abstract:
A FinFET-type semiconductor device includes a fin structure on which a relatively thin amorphous silicon layer and then an undoped polysilicon layer is formed. The semiconductor device may be planarized using a chemical mechanical polishing (CMP) in which the amorphous silicon layer acts as a stop layer to prevent damage to the fin structure.
Abstract:
A method for improving the channel doping profile of deep-submicron field effect transistors and MOSFETs. The method involves a highly localized halo implant formed in the channel region but not in the source/drain junction. The halo implant is performed through a gap formed by removal of a temporary spacer. The MOSFET is then further completed.
Abstract:
A method of manufacturing a MOSFET semiconductor device includes forming a gate electrode over a substrate and a gate oxide between the gate electrode and the substrate. Inert dopants are then implanted within the substrate to form amorphized source/drain regions in the substrate extending to a first depth significantly greater than the intended junction depth. The amorphized source/drain regions are implanted with source/drain dopants such that the dopants extend into the substrate to a second depth less than the first depth, above and spaced apart from the end-of-range defect region created at the first depth by the amorphization process. Laser thermal annealing recrystallizes the amorphous regions, activates the source/drain regions and forms source/drain junctions. Because the recrystallization front velocity towards the substrate main surface is greater than the dopant atom velocity in the liquid substrate during laser thermal annealing, the junctions are not pushed down to the amorphous/crystalline silicon interface. Thus, end-of-range defects are located in a region below and spaced apart from the junctions, and the defects are not located in the activated source/drain regions. Junction leakage as a result of the end-of-range defects is thereby reduced.
Abstract:
For fabricating field effect transistors with a semiconductor substrate in SOI (semiconductor on insulator) technology, a first hardmask is formed on a first area of the semiconductor substrate, and a first dielectric forming dopant is implanted into a second area of the semiconductor substrate that is not covered by the first hardmask. The first hardmask is removed from the first area of the semiconductor substrate. A second hardmask is formed on the second area of the semiconductor substrate, and a second dielectric forming dopant is implanted into the first area of the semiconductor substrate that is not covered by the second hardmask. A thermal anneal is performed to form a first buried insulating structure from the second dielectric forming dopant reacting within the first area of the semiconductor substrate and to form a second buried insulating structure from the first dielectric forming dopant reacting within the second area of the semiconductor substrate. A first semiconductor structure remains on top of the first buried insulating structure and has a different thickness from a second semiconductor structure remaining on top of the second buried insulating structure.
Abstract:
A shallow trench isolation region formed in a layer of semiconductor material. The shallow trench isolation region includes a trench formed in the layer of semiconductor material, the trench being defined by sidewalls and a bottom; a liner within the trench formed from a high-K material, the liner conforming to the sidewalls and bottom of the trench; and a fill section made from isolating material, and disposed within and conforming to the high-K liner. A method of forming the shallow trench isolation region is also disclosed.
Abstract:
A method for forming a fin in a semiconductor device that includes a substrate, an insulating layer formed on the substrate, and a conductive layer formed on the insulating layer, includes forming a carbon layer over the conductive layer and forming a mask over the carbon layer. The method further includes etching the mask and carbon layer to form at least one structure, where the structure has a first width, reducing the width of the carbon layer in the at least one structure to a second width, depositing an oxide layer to surround the at least one structure, removing a portion of the oxide layer and the mask, removing the carbon layer to form an opening in a remaining portion of the oxide layer for each of the at least one structure, filling the at least one opening with conductive material, and removing the remaining portion of the oxide layer and a portion of the conductive layer to form the fin.