Abstract:
A glass sheet is formed on a mold into a glass article having a three-dimensional shape. The mold, with the glass article thereon, is arranged within an interior space of a radiation shield such that the mold is between a leading end barrier and a trailing end barrier of the radiation shield. The mold, glass article, and radiation shield are translated through a sequence of cooling stations while maintaining the mold between the leading and trailing end barriers, wherein the leading and trailing end barriers inhibit radiation heat transfer at leading and trailing ends of the mold.
Abstract:
Please replace the originally filed abstract with the following amended abstract: An apparatus and method for precision bending a glass sheet that includes an oven for heating the glass sheet to a temperature near the softening temperature of the glass sheet. A stage for supporting the glass sheet. A pair of reference surfaces on the stage for precisely locating the glass sheet on the stage. At least one bending mechanism on a pair of arms inside the oven for bending an edge portion of the glass sheet. Inward facing first stop surfaces on the arms that contact reference surfaces on the stage for precisely locating the bending mechanism on the arms relative to the stage and the glass sheet.
Abstract:
Methods for reforming a glass-based sheet by gravity sagging comprising placing a glass-based sheet over a mold, placing a glass-based patch on a top surface of the glass-based sheet, and heating the glass-based sheet and the glass-based patch to a reforming temperature such that both the glass-based sheet and the glass-based patch deform into the mold cavity under gravitational force. The glass-based patch can be sized and positioned on the top surface of the glass-based sheet to prevent the formation of a wrinkle during the reforming method. The glass-based sheet can be reformed using an apparatus comprising the mold and one or more of the glass-based patches fixed relative to a top surface of the mold.
Abstract:
A method for making a glass ribbon that includes: flowing a glass into a caster having a width (Wcast) from about 100 mm to about 5 m and a thickness (t) from about 1 mm to about 500 mm to form an a cast glass; cooling the cast glass in the caster to a viscosity of at least 108 Poise; conveying the cast glass from the caster; drawing the cast glass, the drawing comprising heating the cast glass to an average viscosity of less than 107 Poise and drawing the cast glass into a glass ribbon having a width (Wribbon) that is less than Wcast; and thereafter cooling the glass ribbon to ambient temperature. Further, the cast glass during the cooling, conveying and drawing steps is about 50° C. or higher.
Abstract:
A method includes pressing a preform with a mold including a mold body and a plurality of mold protrusions extending from the mold body at a pressing temperature and a pressing pressure sufficient to transform the preform into a shaped article including a plurality of cavities corresponding to the plurality of mold protrusions. The preform is formed from a glass material, a glass-ceramic material, or a combination thereof. The mold body is formed from a porous material. The plurality of mold protrusions is formed from a non-porous material.
Abstract:
A method includes contacting a glass sheet with a forming surface to form a shaped glass article. An effective viscosity of the glass sheet during the contacting step is less than a contact viscosity of the glass sheet in contact with the forming surface during the contacting step.
Abstract:
A method for making a glass ribbon that includes: flowing a glass into a caster having a width (Wcast) from about 100 mm to about 5 m and a thickness (t) from about 1 mm to about 500 mm to form an a cast glass; cooling the cast glass in the caster to a viscosity of at least 108 Poise; conveying the cast glass from the caster; drawing the cast glass, the drawing comprising heating the cast glass to an average viscosity of less than 107 Poise and drawing the cast glass into a glass ribbon having a width (Wribbon) that is less than Wcast; and thereafter cooling the glass ribbon to ambient temperature. Further, the cast glass during the cooling, conveying and drawing steps is about 50° C. or higher.
Abstract:
A multi-well glass-containing structure, and system and method to manufacture the structure are provided. The structure can be a glass plate having a well defined by a rim at a top of the plate to define a well opening, a well bottom at a bottom of the plate spaced away from the rim by a well wall extending from the rim to the well bottom. A well aspect ratio of the depth of the well to a maximum surface dimension of the well opening can be in a range from 40% to 100%. The inner surface of the well can have an average roughness, Ra, of less than 600 nm. The system can include a mold with a coefficient of thermal expansion that matches the glass-containing structure and the method can include forming the glass plate at a viscosity of about 105 to 107,6 poises.
Abstract:
Disclosed is a laminated glass structure with one or more inner glass layers with at least one in tension and two outer glass layers in compression wherein one or both of the outer layers at least partially wrap around the one or more inner layers at one or more of the edges of the laminated glass structure. Also disclosed is a process for forming a laminated glass structure, comprising providing a laminated glass structure, removing at least some glass from at least one the edges of the structure to produce a concavity in at the at least one edge and applying heat to the at least one edge.
Abstract:
A method includes contacting a second layer of a glass sheet with a forming surface to form a shaped glass article. The glass sheet includes a first layer adjacent to the second layer. The first layer includes a first glass composition. The second layer includes a second glass composition. An effective viscosity of the glass sheet during the contacting step is less than a viscosity of the second layer of the glass sheet during the contacting step. A shaped glass article includes a first layer including a first glass composition and a second layer including a second glass composition. A softening point of the first glass composition is less than a softening point of the second glass composition. An effective 108.2 P temperature of the glass article is at most about 900° C.