摘要:
A present novel and non-trivial semiconductor device, switch device and method performed by the switch device is disclosed. A semiconductor device for conducting current may be comprised of an SI substrate and a plurality of electrodes deposited upon the substrate, where at least one electrode may be comprised of a transparent conductive material (“TCM”). A switching device may be comprised of a plurality of electromagnetic radiation sources and a plurality of the semiconductor devices. The method performed by the switching device may be comprised of receiving a plurality of cycles. During a first cycle, a first semiconductor device may be irradiated, and in response, current may flow through the first semiconductor device and provided to a user circuit. During the second cycle, a second semiconductor device may be irradiated, and in response, current from a user circuit may be received and flow through the first semiconductor device.
摘要:
A switch comprises two photoconductive semiconductors and two corresponding laser diodes driven by opposing voltage sources. The two photoconductive semiconductors are connected in series between a high and low voltage source with a radio frequency output at a center node between the photoconductive semiconductors. Each photoconductive semiconductor may include one ohmic contact and one schottky contact for superior bandwidth and efficiency.
摘要:
The present invention is a high power direct transmitter with frequency-shift keying (FSK) modulation. The transmitter implements a high power, high efficiency power voltage-controlled oscillator (VCO) which allows for production of a modulated RF signal at the final stage (ex.—right at the antenna), thereby eliminating all driving stage power amplification and frequency translation. The transmitter further provides a low SWAP-C alternative to currently available solutions.
摘要:
An exemplary system and method for manufacturing micropump systems having integrated piezoresistive sensors is disclosed as including inter alia: a substrate, an inlet channel, an outlet channel, a pumping cavity, a first valve for permitting fluid flow from the inlet channel to the pumping cavity and restricting backflow of purged fluid from the pumping cavity to the inlet channel; a second valve for permitting fluid flow from the pumping cavity to an outlet channel and restricting backflow of purged fluid from the outlet channel to the pumping cavity; a pump actuator element; a pressure sensing cavity surface capable of at least partial mechanical deformation; a plurality of piezoresistors disposed within the sensing cavity; a plurality of contact pads; a plurality of conductive pathways connecting the piezoresistors and the contact pads; and a substantially monolithic device package, wherein the sensing cavity is substantially contained within the micropump device package. Disclosed features and specifications may be variously controlled, adapted or otherwise optionally modified to improve micropump operation in any microfluidic application. Exemplary embodiments of the present invention representatively provide for piezoresistive pressure sensors that may be readily integrated with existing portable ceramic technologies for the improvement of device package form factors, weights and other manufacturing and/or device performance metrics.
摘要:
A method of forming a vacuum microelectronic device including steps of forming at least one electron emitter on a substrate, applying a first electric field to move a portion of the at least one electron emitter in a direction toward the first electric field, and maintaining the at least one electron emitter in the direction after removing the first electric field.
摘要:
A fuel cell system is protected by monitoring at least one fuel cell parameter, comparing the parameter to a preset level, and disconnecting or reconnecting a main load in response to the fuel cell parameter. For example, a fuel cell system (300) is provided with a protection circuit (304, 308) that prevents operation of the fuel cells in the negative dP/dI region. System (300) includes a stack of fuel cells (302) connected in series and coupled to a main load (310). A controller (304) provides a control signal (314) based on the individual fuel cell voltage levels falling above or below a preset level. Control signal (314)is used to control a load switch (308)coupled between the stack of fuel cells (302) and the main load (310). The load switch (308) disconnects the main load (310) in order to prevent operation of the fuel cell cells in the negative dP/dI region.
摘要:
Before submitting a sample, including a first material layered upon a substrate, to an ion milling process, whereby a second material is sputtered onto the surface of the first material and the sample is then submitted to an etching process, an irregularity is formed on the surface of the first material. The overall process results in the formation of cones, or micro-tip structures, which may then be layered with a layer of low work function material, such as amorphous diamond. The irregularity in the surface of the first material may be formed by polishing, sandblasting, photolithography, or mechanical means such as scratching.
摘要:
A field emission device (200) includes a cathode plate (110) having a back plate (112) made from glass and an anode plate (120) having a transparent substrate (122) also made from glass. A first charge control electrode (152) is affixed to a distal surface (148) of back plate (112), and a second charge control electrode (158) is affixed t0 the periphery of transparent substrate (122). A ballast resistor (114) is disposed on a proximate surface (155) of back plate (112). A method for operating told omission device (200) includes the stop of controlling a potential applied to first charge control electrode (152) in a manner sufficient to control the conductivity of ballast resistor (114) and provide an electron current (138) that is constant. The method further includes the step of controlling a potential applied to second charge control electrode (158) in a manner sufficient to prevent arcing due to wild up or charge within transparent substrate (122).
摘要:
A method for improving life of a field emission display (100), which has a plurality of electron emitters (118) and an anode (124), includes the steps of causing plurality of electron emitters (118) to emit electrons, applying a first anode voltage to anode (124), thereafter applying a second anode voltage to anode (124), and thereafter applying a third anode voltage to anode (124). The first anode voltage and the second anode voltage are selected to cause electrons emitted by plurality of electron emitters (118) to be attracted toward anode (124). The third anode voltage is selected to cause electrons emitted by plurality of electron emitters (118) to not be attracted toward anode (124). Furthermore, the second anode voltage is selected to be less than the first anode voltage.
摘要:
A method for reducing charge accumulation in a field emission display (100) includes the steps of causing a plurality of electron emitters (114) to emit electrons (132) to reduce the potential at an anode (124) of the field emission display (100). Upon the reduction of the potential at the anode (124), the electrons (132) neutralize a positively electrostatically charged surface (129) of a spacer (130). The anode potential is dropped by providing a resistor (127) in series with a voltage source (126) connected to the anode (124). The anode potential is reduced by causing the electron emitters (114) to emit simultaneously to provide a pull-down current (128) at the anode (124). The voltage at the anode (124) is reduced to a value that causes a sufficient flux of electrons (132) to be attracted to the charged surfaces (129) for neutralizing them.