Abstract:
Disclosed herein are polymerization processes for the production of olefin polymers. These polymerization processes can employ a catalyst system containing two or three metallocene components, resulting in ethylene-based copolymers that can have a medium density and improved stress crack resistance.
Abstract:
Disclosed herein are broad molecular weight distribution olefin polymers having densities in the 0.895 to 0.930 g/cm3 range, and with improved impact and tear resistance. These polymers can have a ratio of Mw/Mn in the 8 to 35 range, a high load melt index in the 4 to 50 range, less than about 0.008 LCB per 1000 total carbon atoms, and a reverse comonomer distribution.
Abstract:
Disclosed herein are polymerization processes for the production of olefin polymers. These polymerization processes can employ a catalyst system containing two or three metallocene components, resulting in ethylene-based copolymers that can have a medium density and improved stress crack resistance.
Abstract:
The present invention provides polymerization catalyst compositions employing half-metallocene compounds with a heteroatom-containing ligand bound to the transition metal. Methods for making these hybrid metallocene compounds and for using such compounds in catalyst compositions for the polymerization of olefins also are provided.
Abstract:
Disclosed herein are polymerization processes for the production of olefin polymers. These polymerization processes can use a dual catalyst system containing a zirconium or hafnium based metallocene compound and a titanium based half-metallocene compound containing an indenyl group.
Abstract:
The present invention provides dual catalyst systems and polymerization processes employing these dual catalyst systems. The disclosed polymerization processes can produce olefin polymers at higher production rates, and these olefin polymers may have a higher molecular weight and/or a lower melt index.
Abstract:
A method comprising introducing a polymerization feed comprising an α-olefin, a diluent, and a diene to a polymerization system, under polymerization conditions, whereby a polymer product is produced, wherein the diene is present at a level in the range of from about 1 ppm to about 1000 ppm based on the diluent.
Abstract:
Ethylene polymers having a density from 0.908 to 0.925 g/cm3, a melt index from 0.5 to 3 g/10 min, a ratio of Mw/Mn from 2 to 4, a ratio of Mz/Mw from 1.6 to 2.3, a CY-a parameter from 0.45 to 0.6, and an ATREF profile characterized by a single peak at a peak ATREF temperature from 76 to 88° C., and by less than 4.5 wt. % of the polymer eluting above a temperature of 91° C. These ethylene polymers can be used to produce various articles of manufacture, such as blown and cast films with a beneficial combination of high tear resistance and low haze.
Abstract:
Disclosed herein are ethylene-based polymers produced using dual metallocene catalyst systems. These polymers have low densities, high molecular weights, and broad molecular weight distributions, as well as having the majority of the long chain branches in the lower molecular weight component of the polymer, and the majority of the short chain branches in the higher molecular weight component of the polymer. Films produced from these polymers have improved impact and puncture resistance.
Abstract:
Catalyst systems having both a metallocene catalyst component and a Ziegler-Natta component are disclosed. Such catalyst systems can contain a metallocene compound, an activator-support, an organoaluminum compound, and a Ziegler-Natta component comprising titanium supported on magnesium chloride.