摘要:
New version packet data devices support a backwards-compatible signal format. New version devices operate within a first frequency band while old version devices operate within a second frequency band. The first frequency band differs from but overlaps with the second frequency band. The new version devices may operate on a first carrier frequency (within the first frequency band) while old version devices may operate at a second carrier frequency (within the second frequency band). The new version devices and/or the old version devices may also support carrier-less modulations. Preamble, header, and trailer portions of a new version signal include a plurality of spectral copies of a baseband modulated signal. One or more of these spectral copies of the baseband modulated signal is/are indistinguishable from corresponding components of an old version signal. The payload of the new version signal may be formed in the same manner or may be formed in have a wider bandwidth, higher data rate format.
摘要:
Analog signal paths are utilized between a baseband processor and a radio front end to support high throughput communications for a multiple in multiple out radio transceiver that support communications over two or more antennas. Specifically, analog differential I and Q path communication signals are exchanged between a radio front end core and a baseband processor to maximize throughput capacity for high data rate signals. Along the same lines, the impedances of traces and the interface are matched to reduce I/Q imbalance.
摘要:
A method of controlling power levels on a plurality of transmit streams in a single radio transceiver includes, for each of the plurality of transmit streams, detecting an output power level and sampling the output power level, digitizing the sample output power level, producing the digitized sample to a baseband processor. The baseband processor is operable to perform rate based compensation on the digital sample, to integrate and dump a plurality of digitized samples over a period that exceeds a transmission frame period to produce an average value over a specified number of samples. Thereafter, the processor is operable to convert the integrated plurality of digitized samples to a normalized value and to comparing the normalized value to a target value to generate a power index value to determine an output power level with rate based compensation.
摘要:
A multimode wireless communication device includes a first circuit having a digital baseband processing module to convert outbound data into outbound digital baseband signals and to convert inbound digital baseband signals into inbound data, an analog to digital converter module to convert inbound analog baseband signals into the inbound digital baseband signals, and a digital to analog converter module to convert the outbound digital baseband signals into outbound analog baseband signals. A second circuit includes a first radio section and a third circuit includes a second radio section. A diversity antenna arrangement includes a first antenna, a second antenna, a first diplexer coupled to the first antenna, and a second diplexer coupled to the second antenna, that selectively couples the first radio section to one of the first antenna and the second antenna, and that selectively couples the second radio section to one of the first antenna and the second antenna.
摘要:
A method for generating a preamble of an Orthogonal Frequency Division Multiplexed (OFDM) data frame for a multiple input multiple output (MIMO) wireless communication includes determining at least one system condition preamble format parameter. When the system condition preamble format parameter satisfies a first preamble format parameter a preamble having a first preamble format is formed. When the system condition preamble format parameter satisfies a second preamble format parameter, a preamble having a second preamble format is formed. Further, when the system condition preamble format parameter satisfies a third preamble format parameter, a preamble having a third preamble format is formed. The first, second, and third preamble formats differ based upon their lengths, fields, and modulation formats of a high throughput signal field.
摘要:
New version packet data devices support a backwards-compatible signal format. New version devices operate within a first frequency band while old version devices operate within a second frequency band. The first frequency band differs from but overlaps with the second frequency band. The new version devices may operate on a first carrier frequency (within the first frequency band) while old version devices may operate at a second carrier frequency (within the second frequency band). The new version devices and/or the old version devices may also support carrier-less modulations. Preamble, header, and trailer portions of a new version signal include a plurality of spectral copies of a baseband modulated signal. One or more of these spectral copies of the baseband modulated signal is/are indistinguishable from corresponding components of an old version signal. The payload of the new version signal may be formed in the same manner or may be formed in have a wider bandwidth, higher data rate format.
摘要:
A network device for cancelling spurs without affecting an incoming signal. The network device includes an estimator for estimating amplitude and phase of a spur over a predetermined period of time. The network device also includes processing means for freezing further estimation of the amplitude and phase of the spur, for cancelling for an estimated spur and for allowing incoming packets. The network device further includes subtracting means for subtracting the estimated spur from an incoming packet. The estimated spur is subtracted from the incoming packet without affecting incoming signals that are not part of the estimated spur.
摘要:
A network interface is presented that receives packet data from a shared medium and accomplishes the signal processing required to convert the data packet to host computer formatted data separately from receiving the data packet. The network interface receives the data packet, converts the analog signal to a digitized signal, and stores the resulting sample packet in a storage queue. An off-line processor, which may be the host computer itself, performs the signal processing required to interpret the sample packet. In transmission, the off-line process converts host-formatted data to a digitized version of a transmission data packet and stores that in a transmission queue. A transmitter converts the transmission data packet format and transmits the data to the shared medium.
摘要:
A packet-switched multiple-access network system with a distributed fair priority queuing media access control protocol that provides multiple levels of priority of access and fair collision resolution with improved performance is disclosed. In one embodiment, the system provides high-speed transport of multimedia information on a shared channel. Further, in one embodiment, MAC level side-band signaling that is usefull to other levels of the network protocol (e.g., the physical layer) is also provided.
摘要:
Methods and systems for distributed infrastructure for streaming data via multiple access points. Aspects of one method may include apportioning multimedia information among a plurality of transmitting devices based on feedback channel information received from a destination receiving device by, for example, a transmission controller device. The transmitting devices may transmit the multimedia information to the destination receiving device. A transmitting device that may not be apportioned multimedia information may transmit a probing signal. The destination receiving device may generate feedback channel information for a transmitting device, for example, based on the multimedia information or the probing signal received from the respective transmitting device. The apportioning of the multimedia information may be dynamically adjusted based on updated feedback channel information received from the destination receiving device.