摘要:
A packet-switched multiple-access network system with a distributed fair priority queuing media access control protocol that provides multiple levels of priority of access and fair collision resolution with improved performance is disclosed. In one embodiment, the system provides high-speed transport of multimedia information on a shared channel. Further, in one embodiment, MAC level side-band signaling that is usefull to other levels of the network protocol (e.g., the physical layer) is also provided.
摘要:
A packet-switched multiple-access network system with a distributed fair priority queuing media access control protocol that provides multiple levels of priority of access and fair collision resolution with improved performance is disclosed. In one embodiment, the system provides high-speed transport of multimedia information on a shared channel. Further, in one embodiment, MAC level side-band signaling that is useful to other levels of the network protocol (e.g., the physical layer) is also provided.
摘要:
A network interface is presented that receives packet data from a shared medium and accomplishes the signal processing required to convert the data packet to host computer formatted data separately from receiving the data packet. The network interface receives the data packet, converts the analog signal to a digitized signal, and stores the resulting sample packet in a storage queue. An off-line processor, which may be the host computer itself, performs the signal processing required to interpret the sample packet. In transmission, the off-line process converts host-formatted data to a digitized version of a transmission data packet and stores that in a transmission queue. A transmitter converts the transmission data packet format and transmits the data to the shared medium.
摘要:
A network interface is presented that receives packet data from a shared medium and accomplishes the signal processing required to convert the data packet to host computer formatted data separately from receiving the data packet. The network interface receives the data packet, converts the analog signal to a digitized signal, and stores the resulting sample packet in a storage queue. An off-line processor, which may be the host computer itself, performs the signal processing required to interpret the sample packet. In transmission, the off-line process converts host-formatted data to a digitized version of a transmission data packet and stores that in a transmission queue. A transmitter converts the transmission data packet format and transmits the data to the shared medium.
摘要:
A system for processing a data packet is disclosed and may include at least one processor that enables receiving of a data packet at a station on a network, the data packet having a preamble which includes a destination tag and a training sequence. The at least one processor may enable obtaining a channel model using the training sequence, and encoding each of one or more addresses that the station receives with the channel model to produce a result. The at least one processor may also enable comparing the result with the destination tag. The at least one processor may enable convolving of each of the one or more addresses that the station receives with the channel model to produce the result.
摘要:
A network interface is presented that receives packet data from a shared medium and accomplishes the signal processing required to convert the data packet to host computer formatted data separately from receiving the data packet. The network interface receives the data packet, converts the analog signal to a digitized signal, and stores the resulting sample packet in a storage queue. An off-line processor, which may be the host computer itself, performs the signal processing required to interpret the sample packet. In transmission, the off-line process converts host-formatted data to a digitized version of a transmission data packet and stores that in a transmission queue. A transmitter converts the transmission data packet format and transmits the data to the shared medium.
摘要:
A network interface is presented that receives packet data from a shared medium and accomplishes the signal processing required to convert the data packet to host computer formatted data separately from receiving the data packet. The network interface receives the data packet, converts the analog signal to a digitized signal, and stores the resulting sample packet in a storage queue. An off-line processor, which may be the host computer itself, performs the signal processing required to interpret the sample packet. In transmission, the off-line process converts host-formatted data to a digitized version of a transmission data packet and stores that in a transmission queue. A transmitter converts the transmission data packet format and transmits the data to the shared medium.
摘要:
A network interface is presented that receives packet data from a shared medium and accomplishes the signal processing required to convert the data packet to host computer formatted data separately from receiving the data packet. The network interface receives the data packet, converts the analog signal to a digitized signal, and stores the resulting sample packet in a storage queue. An off-line processor, which may be the host computer itself, performs the signal processing required to interpret the sample packet. In transmission, the off-line process converts host-formatted data to a digitized version of a transmission data packet and stores that in a transmission queue. A transmitter converts the transmission data packet format and transmits the data to the shared medium.
摘要:
Methods and systems for content-aware mapping/error protection are disclosed. Aspects of one method may include controlling a MAC layer and/or a PHY layer (PHY/MAC layer), in a wireless communication device to wirelessly communicate multimedia information based on content of the multimedia information, which may comprise video information, audio information, and/or data. The controlling of the PHY/MAC layer may comprise selecting a forward error correction code and modulation to be applied to portions of the multimedia information, and selecting one or more antenna to transmit the portions of the multimedia information. The selection criteria may be based on priority assigned to the portions of the multimedia information, and on feedback information from the receiving device and/or a receiver co-located with the device transmitting the multimedia information.
摘要:
Aspects of a method and system for dual mode operation in wireless networks are presented. Aspects of the system include a communicating device that selects an RF channel and a physical layer type. The communicating device may process signals received via the selected RF channel based on the selected physical layer type. The communicating device may determine whether a beacon frame has been detected base on the signals that were received via the selected RF channel and processed based on the selected physical layer type. When a frame is not detected, the communicating device may determine a signal energy level for the received signals. The communicating device may establish an association with an existing network based on detection of the beacon frame or the communicating device may transmit an originating beacon frame based on the determined signal energy level.