Abstract:
A telecommunications system is provided that can re-sample a digitized signal at a resample rate that is based on one or more factors to better utilize bandwidth. The factors can include the bandwidth of the signal that the digitized signal represents, the amount of bandwidth owned or used by the carrier, the full bandwidth of the designated RF band, the bandwidth of the serial link, the frame length of the serial link, the segmentation of the frames on the serial link, and the capability of the equipment at the receiving end of a serial link. The re-sampled signal can be transmitted to another unit that is remote to the unit transmitting the signal. The other unit can include a re-sampling device that restores the re-sampled signal to a digital signal that can be converted to an analog signal for wireless transmission.
Abstract:
Certain aspects involve selectively combining uplink transmissions in a distributed antenna system (“DAS”). For example, a unit of the DAS can receive baseband uplink transmissions from remote units of the DAS via a first channel and a second channel. The unit can generate a first combined uplink signal by combining baseband uplink transmissions received from a first subset of the remote units via the first channel that include data for transmission to a base station. The unit can generate a second combined uplink signal that includes baseband uplink transmissions received from a second subset of the remote units via the second channel and excludes or attenuates baseband uplink transmissions that are received from the first subset of the remote units via the second channel and that lack data for transmission to the base station are excluded or attenuated. The unit can transmit the combined uplink signals to the base station.
Abstract:
A method of controlling uplink signal power in a distributed antenna system includes monitoring a noise condition of an uplink signal path in the distributed antenna system and determining the noise contribution from the distributed antenna system that is presented to the base station. The receive noise floor of the base station is determined. The determined noise contribution and receive noise floor are unlisted. Based on the evaluation, the uplink gain that is applied to uplink signals from the distributed antenna system to a base station is adjusted.
Abstract:
Certain features relate to configuring a remote unit in a distributed antenna system (DAS) to switch between a baseband mode of operation and a measurement receiver mode of operation. In the baseband mode of operation, the remote unit can transmit a subset of baseband channels to a head-end unit or an extension unit of the DAS. The subset of baseband channels can carry wireless communication information. In the measurement receiver mode, the remote unit can transmit wideband data to the head-end unit or the extension unit of the DAS. The wideband data can include one or more of a measurement data for additional baseband channels other than the subset of baseband channels and information for use by the head-end unit to modify a configuration of the distributed antenna system.
Abstract:
A PoE powered device and method of operation are provided. The device includes a first port unit configured to negotiate receipt of a level of PoE power from a power sourcing equipment. The power is received on a first pair of taps on a first communication port. A detection unit is configured to detect a presence of a first optional circuit load and to detect a presence of a second optional power load. A control circuit is configured to establish connectivity between a second pair of taps on the first communication port and a second powered device port unit in response to the detection unit detecting the first optional load, and further configured to establish connectivity between the second pair of taps and a third pair of taps on a pass-through communication port in response to the detection unit failing to detect the first load and detecting the second load.
Abstract:
Embodiments are disclosed for extracting sub-bands of interest from signals in a frequency domain for transmission via a distributed antenna system. In one aspect, a transformed downlink signal is generated by performing a frequency transform on a downlink signal. The transformed downlink signal represents the downlink signal in a frequency domain. At least one sub-band of the transformed downlink signal is identified as including data to be transmitted via the distributed antenna system. The sub-band is extracted from the transformed downlink signal for transmission via the distributed antenna system.
Abstract:
A method of controlling uplink signal power in a distributed antenna system includes monitoring a noise condition of an uplink signal path in the distributed antenna system and determining the noise contribution from the distributed antenna system that is presented to the base station. The receive noise floor of the base station is determined. The determined noise contribution and receive noise floor are unlisted. Based on the evaluation, the uplink gain that is applied to uplink signals from the distributed antenna system to a base station is adjusted.
Abstract:
Systems and methods for optimized telecommunications distribution are provided. For example, a distributed antenna system can include a master unit for transceiving signals with remote units operable for wirelessly transceiving signals with mobile devices in a coverage area. A self-optimized network analyzer can be in a unit of the distributed antenna system. A self-optimized network controller in the distributed antenna system can output commands for changing operation of a component in the distributed antenna system in response to analysis results from the self-optimized network analyzer. In some aspects, the master unit includes base transceiver station cards for receiving call information in network protocol data from a network and for generating digital signals including the call information from the network protocol data for distribution to the remote units.
Abstract:
One embodiment is directed to an open radio access network (O-RAN) distributed antenna system (DAS) that comprises a central access node (CAN) configured to communicatively couple at least one O-RAN distributed unit (O-DU) to the O-RAN DAS, where the O-DU is configured to communicate with a single O-RAN remote unit (O-RU) entity. The O-RAN DAS also includes a plurality of O-RAN remote units (O-RUs) communicatively coupled to the CAN over a fronthaul network, where the O-DU, CAN, and O-RUs are configured to natively use an O-RAN fronthaul interface to communicate fronthaul data over the fronthaul network. The CAN is configured to appear to the O-DU as the single O-RU entity for a cell served by the O-DU even though the CAN is configured to serve the cell using multiple O-RUs that form a simulcast group for that cell. One or more CANs can be used. Other embodiments are disclosed.
Abstract:
An interface is provided for processing digital signals in a standardized format in a distributed antenna system. One example includes a unit disposed in a distributed antenna system. The unit includes an interface section and an output section. The interface section is configured for outputting a first complex digital signal and a second complex digital signal. The first complex digital signal is generated from a digital signal in a standardized format received from a digital base station. The output section is configured for combining the first complex digital signal and the second complex digital signal into a combined digital signal. The output section is also configured for outputting the combined digital signal. The combined digital signal comprises information to be wirelessly transmitted to a wireless user device.