Abstract:
A discrete multitone stacked-carrier spread spectrum communication method is based on frequency domain spreading including multiplication of a baseband signal by a set of superimposed, or stacked, complex sinusoid carrier waves. In a preferred embodiment, the spreading involves energizing the bins of a large Fast Fourier transform (FFT). This provides a considerable savings in computational complexity for moderate output FFT sizes. Point-to-multipoint and multipoint-to-multipoint (nodeless) network topologies are possible. A code-nulling method is included for interference cancellation and enhanced signal separation by exploiting the spectral diversity of the various sources. The basic method may be extended to include multielement antenna array nulling methods for interference cancellation and enhanced signal separation using spatial separation. Such methods permit directive and retrodirective transmission systems that adapt or can be adapted to the radio environment. Such systems are compatible with bandwidth-on-demand and higher-order modulation formats and use advanced adaptation algorithms. In a specific embodiment the spectral and spatial components of the adaptive weights are calculated in a unified operation based on the mathematical analogy between the spectral and spatial descriptions of the airlink.
Abstract:
A discrete multitone stacked-carrier spread spectrum communication method is based on frequency domain spreading including multiplication of a baseband signal by a set of superimposed, or stacked, complex sinusoid carrier waves. In a preferred embodiment, the spreading involves energizing the bins of a large Fast Fourier transform (FFT). This provides a considerable savings in computational complexity for moderate output FFT sizes. Point-to-multipoint and multipoint-to-multipoint (nodeless) network topologies are possible. A code-nulling method is included for interference cancellation and enhanced signal separation by exploiting the spectral diversity of the various sources. The basic method may be extended to include multielement antenna array nulling methods for interference cancellation and enhanced signal separation using spatial separation. Such methods permit directive and retrodirective transmission systems that adapt or can be adapted to the radio environment. Such systems are compatible with bandwidth-on-demand and higher-order modulation formats and use advanced adaptation algorithms. In a specific embodiment the spectral and spatial components of the adaptive weights are calculated in a unified operation based on the mathematical analogy between the spectral and spatial descriptions of the airlink.
Abstract:
A discrete multitone stacked-carrier spread spectrum communication method is based on frequency domain spreading including multiplication of a baseband signal by a set of superimposed, or stacked, complex sinusoid carrier waves. In a preferred embodiment, the spreading involves energizing the bins of a large Fast Fourier transform (FFT). This provides a considerable savings in computational complexity for moderate output FFT sizes. Point-to-multipoint and multipoint-to-multipoint (nodeless) network topologies are possible. A code-nulling method is included for interference cancellation and enhanced signal separation by exploiting the spectral diversity of the various sources. The basic method may be extended to include multielement antenna array nulling methods for interference cancellation and enhanced signal separation using spatial separation. Such methods permit directive and retrodirective transmission systems that adapt or can be adapted to the radio environment. Such systems are compatible with bandwidth-on-demand and higher-order modulation formats and use advanced adaptation algorithms. In a specific embodiment the spectral and spatial components of the adaptive weights are calculated in a unified operation based on the mathematical analogy between the spectral and spatial descriptions of the airlink.
Abstract:
The optical assembly of a GDI instrument is configured to deviate or steer stray beams away from the pupil of the instrument's imaging device and/or to suppress stray beams. Stray beam deviation is optimized by selecting particular wedge and/or tilt configurations that achieve the desired stray beam deviation while avoiding or at least minimizing phase offset at the optimum metrology plane. Stray beam suppression can be achieved by providing the diffractive groove profile of the instrument's optical assembly with smooth edges. The resultant profile facilitates effective diffraction order management as well as a reduction in back reflection. The invention is particularly well-suited for use with a GDI instrument in which the optical assembly comprises first and second diffraction gratings. In this case, any average phase offset that remains after setting wedge and/or tilt can be eliminated by inserting a suitable compensating plate between the first and second diffraction gratings or between the second diffraction grating and the object.
Abstract:
A dense carbon free surface is provided on a carbon bonded refractory shape which is particularly useful as a pouring tube liner to prevent the formation and build-up of alumina particles which may cause blockage of the tube. The carbon free, dense layer is also hard and erosion resistant making it ideal for use in other applications such as stopper rod noses. The material comprises a refractory mix having a major component of refractory oxides such as alumina and zirconia-mullite. Less than 10 wt. % carbon in the form of graphite and binder is in the mix plus about 2-5 wt. % of a metal such as silicon and an effective mount of sintering aids is also present. The pressed shape is preheated to a temperature of 1000.degree. -1400.degree. C. in air to oxidize the exposed surface of the shape and then to sinter the oxidized surface to form the desired dense, carbon free surface over the entire shape or on selected surface portions thereof.