Abstract:
This disclosure relates to counterfeit detection and deterrence using advanced signal processing technology including steganographic embedding and digital watermarking. Digital watermark can be used on consumer products, labels, logos, hang tags, stickers and other objects to provide counterfeit detection mechanisms.
Abstract:
The present disclosure relate generally to image signal processing, color science and signal encoding. One claim recites an apparatus including: an input for obtaining color image data; memory for storing a luminance contrast sensitivity function (CSF1) and a chrominance contrast sensitivity function (CSF2); means for degrading data representing color image data with the CSF1 and the CSF2 to predict visibility changes attributable to encoding plural-bit information in the obtained color image data, in which the CSF1 varies depending on luminance values associated with local regions of the color image data, in which said means for degrading data representing color image data yields results for different image areas within the color image data, and in which the CSF1 is used for degrading luminance data and the CSF2 is used for degrading chrominance data; and means for altering the color image data by encoding plural-bit information therein, in which signal embedding strength of the encoding within the different image areas varies based on the results. Of course, other features, combinations and claims are disclosed as well.
Abstract:
The present disclosure relates generally to digital watermarking for spot colors. In one implementation a substitute spot color+CMY tint is selected to replace an original spot color. The CMY tint can be transformed to carry a digital watermark signal. Of course, other features, combinations and technology are described herein.
Abstract:
In one embodiment, a sidewalk-facing display window of a retail store is treated to scatter (or absorb) a portion of incident light, in a narrow wavelength spectral band. A machine-readable pattern, which encodes an identifier, is projected onto the treated window from outside the store. The reflection (absorption) of that projected pattern, within the narrow spectral band, escapes notice of shoppers on the sidewalk. Yet if a shopper captures imagery of a product displayed on the other side of the display window, using a mobile device camera, the pattern is captured with the imagery, and can be analyzed to decode the identifier. The mobile device can use this decoded identifier to access online information about the displayed product, for presentation to the shopper on the mobile device display. The technology is particularly suited for wearable computing devices, and more generally enables glass windows to subliminally convey digital information to image sensors conveyed by passing shoppers. A great variety of other features and arrangements are also detailed.
Abstract:
The present disclosure relate generally to color science and digital watermarking. A full color visibility model has been developed which has good correlation to subjective visibility tests for color patches degraded with a watermark. A relatively better correlation can be achieved with a model that applies a luminance correction to the contrast sensitivity functions (CSF). The model can be applied during the watermark embed process, using a pyramid based method, to obtain equal visibility. Better robustness and visibility can be obtained with equal visibility embed than uniform strength embed. Of course, other features, combinations and claims are disclosed as well.
Abstract:
This disclosure relates to advanced image signal processing technology including encoded signals and digital watermarking. One claim is directed to a container comprising: a 3004 or 3003 aluminum alloy shell, the shell comprising an outer surface and an inner surface; a first layer of transparent ink printed on the outer surface as a flood within a first region; a second layer of the transparent ink printed over the first layer of transparent ink within the first region, in which the second layer of the transparent ink is printed to include a plurality of holes without any transparent ink printed therein; an opaque ink printed within the plurality of holes of the second layer of transparent ink on first layer of transparent ink within the first region, in which: i) the outer surface/first layer/second layer, and ii) the outer surface/first layer/opaque ink comprise a spectral reflectance difference at a machine-vision wavelength in the range of 8%-35%, and in which the plurality of holes are arranged in a 2-dimensional pattern according to a machine-readable signal, the 2-dimensional pattern being machine-readable from imagery captured of the first region. Of course, other containers, methods, packages, objects, systems, technology and apparatus are described in this disclosure.
Abstract:
This disclosure relates to counterfeit detection and deterrence using advanced signal processing technology including steganographic embedding and digital watermarking. Digital watermark can be used on consumer products, labels, logos, hang tags, stickers and other objects to provide counterfeit detection mechanisms.
Abstract:
This disclosure relates to advanced image signal processing technology including encoded signals and digital watermarking. One implementation is directed a printed object comprising: a substrate comprising a first area; a first colored ink or design printed within the first area, the first colored ink or design comprising a spectral reflectivity of less than or equal to 20% at or around 660 nm; a colored ink mixture printed over the first colored ink or design at a first plurality of spatial locations within the first area, the colored ink mixture printed such that the first area comprises a second plurality of spatial locations without the colored ink mixture, the colored ink mixture comprising opaque white ink and a first colorant, wherein the color ink mixture comprises a spectral reflectivity greater than the first colored ink or design at or around 660 nm, and wherein colored ink mixture comprises a spectral reflectivity less than the first colored ink or design in the range of 495 nm-570 nm; in which the first plurality of spatial locations is arranged in a pattern conveying an encoded signal, and in which the first colored ink or design and the colored ink mixture comprise a spectral reflectivity difference at or around 660 nm in a difference range of 8%-30%. Of course, other objects, methods, packages, labels, containers, systems and apparatus are described in this patent document.
Abstract:
This disclosure relates to advanced image signal processing technology including encoded signals and digital watermarking. A printed object is provided including: a white substrate or printed white background comprising a first area; an ink mixture printed at a first plurality of spatial locations within the first area, the ink mixture printed such that the first area comprises a second plurality of spatial locations without the ink mixture, in which the first plurality of spatial locations is arranged in a 2-dimensional pattern conveying an encoded signal. The white substrate or white background and the ink mixture comprise a spectral reflectivity difference at or around 660 nm in a difference range of 8%-30%. Of course, other implementations, methods, packages, systems and apparatus are described in this patent document.
Abstract:
This disclosure relates to counterfeit detection and deterrence using advanced signal processing technology including steganographic embedding and digital watermarking. Digital watermark can be used on consumer products, labels, logos, hang tags, stickers and other objects to provide counterfeit detection mechanisms.