Abstract:
The present invention discloses compounds of Formula (I), or pharmaceutically acceptable salts, ester, stereoisomer, tautomer, solvate, hydrate, or combination thereof: which inhibit the Apoptosis signal-regulating kinase 1 (ASK-1), which associated with autoimmune disorders, neurodegenerative disorders, inflammatory diseases, chronic kidney disease, cardiovascular disease. The present invention further relates to pharmaceutical compositions comprising the aforementioned compounds for administration to a subject suffering from ASK-1 related disease. The invention also relates to methods of treating an ASK-1 related disease in a subject by administering a pharmaceutical composition comprising the compounds of the present invention. The present invention specifically relates to methods of treating ASK-1 associated with hepatic steatosis, including non-alcoholic fatty liver disease (NAFLD) and non-alcohol steatohepatitis disease (NASH).
Abstract:
The present invention provides compounds of Formula I: pharmaceutical compositions comprising these compounds and methods of using these compounds to treat or prevent a disease or disorder mediated as FXR modulators. Specifically, the present invention relates to isoxazole derivatives useful as agonists for FXR, and methods for their preparation and use.
Abstract:
The present invention provides compounds of Formula I, pharmaceutical compositions comprising these compounds and methods of using these compounds to treat or prevent a disease or disorder mediated as FXR modulators. Specifically, the present invention relates to isoxazole derivatives useful as agonists for FXR, and methods for their preparation and use.
Abstract:
The present invention provides compounds of Formula (I) or Formula (II): pharmaceutical compositions comprising these compounds and methods of using these compounds to treat or prevent a disease or disorder mediated by FXR and/or TGR5.
Abstract:
The present invention discloses compounds of Formula I or pharmaceutically acceptable salts, esters, or prodrugs thereof: which inhibit serine protease activity, particularly the activity of hepatitis C virus (HCV) NS3-NS4A protease. Consequently, the compounds of the present invention interfere with the life cycle of the hepatitis C virus and are also useful as antiviral agents. The present invention further relates to pharmaceutical compositions comprising the aforementioned compounds for administration to a subject suffering from HCV infection. The invention also relates to methods of treating an HCV infection in a subject by administering a pharmaceutical composition comprising the compounds of the present invention.
Abstract:
The present invention relates to cyclosporin analogues having antiviral activity against HCV and useful in the treatment of HCV infections. More particularly, the invention relates to novel cyclosporin analogue compounds, compositions containing such compounds and methods for using the same, as well as processes for making such compounds.
Abstract:
The present invention relates to novel cyclosporine analogues having antiviral activity against HCV and useful in the treatment of HCV infections. More particularly, the invention relates to novel cyclosporine analogue compounds, compositions containing such compounds and methods for using the same, as well as processes for making such compounds.
Abstract:
The present invention discloses compounds of formula I, II or X, or pharmaceutically acceptable salts, esters, or prodrugs thereof: which exhibit antibacterial properties. The present invention further relates to pharmaceutical compositions comprising the aforementioned compounds for administration to a subject in need of antibiotic treatment. The invention also relates to methods of treating a bacterial infection in a subject by administering a pharmaceutical composition comprising the compounds of the present invention. The invention further includes process by which to make the compounds of the present invention.
Abstract:
The present invention discloses compounds of Formula (I), or pharmaceutically acceptable salts, ester, stereoisomer, tautomer, solvate, hydrate, or combination thereof:
which inhibit the Apoptosis signal-regulating kinase 1 (ASK-1), which associated with autoimmune disorders, neurodegenerative disorders, inflammatory diseases, chronic kidney disease, cardiovascular disease. The present invention further relates to pharmaceutical compositions comprising the aforementioned compounds for administration to a subject suffering from ASK-1 related disease. The invention also relates to methods of treating an ASK-1 related disease in a subject by administering a pharmaceutical composition comprising the compounds of the present invention. The present invention specifically relates to methods of treating ASK-1 associated with hepatic steatosis, including non-alcoholic fatty liver disease (NAFLD) and non-alcohol steatohepatitis disease (NASH).
Abstract:
The present invention provides compounds of Formula I, pharmaceutical compositions comprising these compounds and methods of using these compounds to prevent or treat FXR-mediated or TGR5-mediated diseases or conditions.