Abstract:
Transitioning from basic higher order MIMO channel estimation to enhanced higher order MIMO channel estimation (and vice-versa) can be accomplished through the signaling of high-speed downlink packet access (HSDPA) shared control channel (HS-SCCH) orders to next-generation user equipments (UEs). A base station can be configured to send an HS-SCCH order indicating activation of scheduled pilot channels, and then begin transmitting the scheduled pilot channels after receiving an ACK message from at least one next-generation UE. A base station can also be configured to send an HS-SCCH order indicating de-activation of scheduled pilot channels to next-generation UEs scheduled for downlink transmission, and then stop transmitting the scheduled pilot channels after receiving ACK messages from each next-generation UE. Alternatively, scheduled pilot channels may be activated/de-activated without receiving an ACK message from some or all of the next-generation UEs scheduled for downlink transmission.
Abstract:
System and method embodiments are provided for a subframe structure for wideband LTE. In an embodiment, a method in a communications controller for transmitting a packet to a wireless device includes signaling a UL/DL configuration to the wireless device, wherein the UL/DL configuration indicates a quantity of uplink microframes in a group of microframes, wherein each subframe includes a plurality of microframes, and wherein the group of microframes includes a consecutive sequence downlink microframes and a consecutive sequence of uplink microframes. The packet is transmitted to the wireless device in one downlink microframe. The method further includes receiving an acknowledgement of the packet in an uplink microframe, wherein the uplink microframe is determined in accordance with the one downlink microframe and the uplink-downlink configuration, and wherein the acknowledgement is received in a same subframe as a subframe utilized for transmitting the packet to the wireless device.
Abstract:
An apparatus is configured to perform a method for user equipment (UE) offloading. The method includes receiving, at a network controller, a measurement report from a UE, the measurement report radio link measurement quantities of a serving cell and one or more candidate serving cells, the measurement quantities measured after interference cancellation or suppression. The method also includes, based in part on the measurement report from the UE, determining whether to offload the UE to a second cell among the one or more candidate serving cells.
Abstract:
Embodiments are provided for optimizing the Almost Blank Subframe (ABS) pattern in heterogeneous network (HetNet) deployments with multiple small cells. One ABS pattern is used for all small cells. Different small cells can have different downlink loads from user equipments (UEs). An embodiment method includes transmitting a pilot signal in a small cell, and determining downlink load (DLL) information according to a pair of measurements from each UE served by the small cell. The pair of measurements includes a first measurement of the pilot signal and a second measurement of a second pilot signal from a macro cell. The method further includes determining a number of ABSs according to the DLL information, and reporting the DLL information and the number of ABSs to a network entity for selecting ABS density and range extension for the small cell and the macro cell.
Abstract:
System and method embodiments are provided for adaptive pilot allocation. In an embodiment, a method in a communication controller for adaptive pilot allocation includes determining at least one channel condition parameter for a wireless channel between the communications controller and a user equipment (UE). The method includes selecting a microframe pilot pattern to use for subsequent communications on the wireless channel according to the at least one channel condition parameter. Additionally, the method includes signaling an indication of the selected microframe pilot pattern to the user equipment. The method further includes transmitting data to the UE using the selected microframe pilot pattern.
Abstract:
A method for generating a code, a method for encoding and decoding data, and an encoder and a decoder performing the encoding and decoding are disclosed. In an embodiment, a method for lifting a child code from a base code for encoding and decoding data includes determining a single combination of a circulant size, a lifting function, and a labelled base matrix PCM according to an information length and a code rate using data stored in a lifting table. The lifting table was defined at a code generation stage. The method also includes calculating a plurality of shifts for the child code. Each shift is calculated by applying the lifting function to the labelled base matrix PCM with a defined index using the circulant size and using the derived child PCM to encode or decode data.
Abstract:
System and method embodiments are provided for adaptive pilot allocation. In an embodiment, a method in a communication controller for adaptive pilot allocation includes determining at least one channel condition parameter for a wireless channel between the communications controller and a user equipment (UE). The method includes selecting a microframe pilot pattern to use for subsequent communications on the wireless channel according to the at least one channel condition parameter. Additionally, the method includes signaling an indication of the selected microframe pilot pattern to the user equipment. The method further includes transmitting data to the UE using the selected microframe pilot pattern.
Abstract:
System and method embodiments are provided for a subframe structure for wideband LTE. In an embodiment, a method in a communications controller for transmitting a packet to a wireless device includes signaling a UL/DL configuration to the wireless device, wherein the UL/DL configuration indicates a quantity of uplink microframes in a group of microframes, wherein each subframe includes a plurality of microframes, and wherein the group of microframes includes a consecutive sequence downlink microframes and a consecutive sequence of uplink microframes. The packet is transmitted to the wireless device in one downlink microframe. The method further includes receiving an acknowledgement of the packet in an uplink microframe, wherein the uplink microframe is determined in accordance with the one downlink microframe and the uplink-downlink configuration, and wherein the acknowledgement is received in a same subframe as a subframe utilized for transmitting the packet to the wireless device.
Abstract:
A decoding method, an encoding method, a decoder and an encoder are disclosed. In an embodiment the decoding method includes receiving, at a receiver of a receiving side, signals from a transmitting side, the signals including a code word and decoding, at a decoder of the receiving side, the code word using a low density parity check (LDPC) code in which each n adjacent rows, n>1, in an extension part of a base parity check matrix (PCM) are orthogonal except for punctured information columns.
Abstract:
A method for generating a code, a method for encoding and decoding data, and an encoder and a decoder performing the encoding and decoding are disclosed. In an embodiment, a method for lifting a child code from a base code for encoding and decoding data includes determining a single combination of a circulant size, a lifting function, and a labelled base matrix PCM according to an information length and a code rate using data stored in a lifting table. The lifting table was defined at a code generation stage. The method also includes calculating a plurality of shifts for the child code. Each shift is calculated by applying the lifting function to the labelled base matrix PCM with a defined index using the circulant size and using the derived child PCM to encode or decode data.