Abstract:
An apparatus is configured to perform a method for user equipment (UE) offloading. The method includes receiving, at a network controller, a measurement report from a UE, the measurement report radio link measurement quantities of a serving cell and one or more candidate serving cells, the measurement quantities measured after interference cancellation or suppression. The method also includes, based in part on the measurement report from the UE, determining whether to offload the UE to a second cell among the one or more candidate serving cells.
Abstract:
An apparatus is configured to perform a method for user equipment (UE) offloading. The method includes receiving, at a network controller, a measurement report from a UE, the measurement report radio link measurement quantities of a serving cell and one or more candidate serving cells, the measurement quantities measured after interference cancellation or suppression. The method also includes, based in part on the measurement report from the UE, determining whether to offload the UE to a second cell among the one or more candidate serving cells.
Abstract:
In one embodiment, a method includes receiving a first indicator of channel quality between a user equipment (UE) and a first network node and receiving a second indicator of channel quality between the UE and a second network node. The method also includes processing the first indicator of channel quality and processing the second indicator of channel quality.
Abstract:
Embodiments are provided for configuring channel measurements and reporting by a user equipment (UE). The embodiments avoid unnecessary cell measurements and resulting reporting transmissions by the UE in network scenarios with restricted downlink transmissions from serving cells. A method by a network component includes sending, to the UE, a data transmission pattern for transmissions on downlinks from multiple cells serving the UE. The data transmission pattern indicates a plurality of subframes including one or more restricted subframes where transmissions from one of the cells are restricted. The method further includes sending, to the UE, a measurement pattern allocating measurements and reports for a cell from the UE to the cells at corresponding designated subframes of the subframes in the data transmission pattern. The UE transmits measurement reports to an assisting serving cell during the one or more restricted subframes.
Abstract:
An apparatus is configured to perform a method for user equipment (UE) offloading. The method includes receiving, at a network controller, a measurement report from a UE, the measurement report radio link measurement quantities of a serving cell and one or more candidate serving cells, the measurement quantities measured after interference cancellation or suppression. The method also includes, based in part on the measurement report from the UE, determining whether to offload the UE to a second cell among the one or more candidate serving cells.
Abstract:
Transitioning from basic higher order MIMO channel estimation to enhanced higher order MIMO channel estimation (and vice-versa) can be accomplished through the signaling of high-speed downlink packet access (HSDPA) shared control channel (HS-SCCH) orders to next-generation user equipments (UEs). A base station can be configured to send an HS-SCCH order indicating activation of scheduled pilot channels, and then begin transmitting the scheduled pilot channels after receiving an ACK message from at least one next-generation UE. A base station can also be configured to send an HS-SCCH order indicating de-activation of scheduled pilot channels to next-generation UEs scheduled for downlink transmission, and then stop transmitting the scheduled pilot channels after receiving ACK messages from each next-generation UE. Alternatively, scheduled pilot channels may be activated/de-activated without receiving an ACK message from some or all of the next-generation UEs scheduled for downlink transmission.
Abstract:
Transitioning from basic higher order MIMO estimation to enhanced higher order MIMO estimation (and vice-versa) can be accomplished through the signaling of high-speed downlink packet access (HSDPA) shared control channel (HS-SCCH) orders to next-generation user equipments (UEs). A base station can be configured to send an HS-SCCH order indicating activation of scheduled pilot channels, and then begin transmitting the scheduled pilot channels after receiving an ACK message from at least one next-generation UE. A base station can also be configured to send an HS-SCCH order indicating de-activation of scheduled pilot channels to next-generation UEs scheduled for downlink transmission, and then stop transmitting the scheduled pilot channels after receiving ACK messages from each next-generation UE. Alternatively, scheduled pilot channels may be activated/de-activated upon expiration of a timeout period, even without receiving an ACK message from some or all of the next-generation UEs scheduled for downlink transmission.
Abstract:
Transitioning from basic higher order MIMO channel estimation to enhanced higher order MIMO channel estimation (and vice-versa) can be accomplished through the signaling of high-speed downlink packet access (HSDPA) shared control channel (HS-SCCH) orders to next-generation user equipments (UEs). A base station can be configured to send an HS-SCCH order indicating activation of scheduled pilot channels, and then begin transmitting the scheduled pilot channels after receiving an ACK message from at least one next-generation UE. A base station can also be configured to send an HS-SCCH order indicating de-activation of scheduled pilot channels to next-generation UEs scheduled for downlink transmission, and then stop transmitting the scheduled pilot channels after receiving ACK messages from each next-generation UE. Alternatively, scheduled pilot channels may be activated/de-activated without receiving an ACK message from some or all of the next-generation UEs scheduled for downlink transmission.
Abstract:
An apparatus is configured to perform a method for user equipment (UE) offloading. The method includes receiving, at a network controller, a measurement report from a UE, the measurement report radio link measurement quantities of a serving cell and one or more candidate serving cells, the measurement quantities measured after interference cancellation or suppression. The method also includes, based in part on the measurement report from the UE, determining whether to offload the UE to a second cell among the one or more candidate serving cells.
Abstract:
Transitioning from basic higher order MIMO estimation to enhanced higher order MIMO estimation (and vice-versa) can be accomplished through the signaling of high-speed downlink packet access (HSDPA) shared control channel (HS-SCCH) orders to next-generation user equipments (UEs). A base station can be configured to send an HS-SCCH order indicating activation of scheduled pilot channels, and then begin transmitting the scheduled pilot channels after receiving an ACK message from at least one next-generation UE. A base station can also be configured to send an HS-SCCH order indicating de-activation of scheduled pilot channels to next-generation UEs scheduled for downlink transmission, and then stop transmitting the scheduled pilot channels after receiving ACK messages from each next-generation UE. Alternatively, scheduled pilot channels may be activated/de-activated upon expiration of a timeout period, even without receiving an ACK message from some or all of the next-generation UEs scheduled for downlink transmission.