Abstract:
A method, operable at a network node of a wireless network, schedules radio resource usage for a mobile device to transmit on a device-to-device connection. The method includes receiving, from the mobile device, an indication of a requirement for transmission resources, comprising at least an indication that the resources are required with a periodicity, transmitting, to the mobile device, an assignment of a first scheduling configuration for the device-to-device connection, comprising at least an indication of periodically recurring radio resources to be used for a plurality of instances of a message transmission on the device-to-device connection, transmitting, to the mobile device, an indication to begin use of the periodically recurring radio resources, and handing over responsibility for providing radio resources for the device-to-device connection from the network node to a target network node such that the availability of radio resources with the periodicity is substantially maintained.
Abstract:
A method, operable at a network node of a wireless network, schedules radio resource usage for a mobile device to transmit on a device-to-device connection. The method includes receiving, from the mobile device, an indication of a requirement for transmission resources, comprising at least an indication that the resources are required with a periodicity, transmitting, to the mobile device, an assignment of a first scheduling configuration for the device-to-device connection, comprising at least an indication of periodically recurring radio resources to be used for a plurality of instances of a message transmission on the device-to-device connection, transmitting, to the mobile device, an indication to begin use of the periodically recurring radio resources, and handing over responsibility for providing radio resources for the device-to-device connection from the network node to a target network node such that the availability of radio resources with the periodicity is substantially maintained.
Abstract:
Embodiments are provided herein for determining a synchronizing master for device-to-device (D2D) communication in a cellular network environment. In an embodiment, a user equipment (UE) receives a discovery signal comprising a timing reference, and determines a transmitter of the discovery signal. In accordance with the determination of the transmitter of the discovery signal, the UE performs one of synchronizing to the timing reference in the discovery signal and transmitting a second discovery signal. The UE performs the synchronizing to the timing reference if the transmitter of the discovery is a cellular network. Alternatively, the UE transmits the second discovery signal upon determining that the transmitter of the discovery signal is a second UE that is out of coverage of a cellular network.
Abstract:
A transmit power control rule for device-to-device (D2D) transmissions may not be necessary during periods in which no uplink transmissions are scheduled to be received by an enhanced Node B base station (eNB). When uplink transmissions are not scheduled to be received by the eNB, the eNB may send a transmit power control (TPC) command to a D2D capable user equipment (D2D UE) that instructs the D2D UE to perform a D2D transmission at a pre-defined transmit power level (e.g., maximum transmit power level). When uplink transmissions are scheduled to be received the eNB, the eNB may send a TPC command to the D2D UE that instructs the D2D UE to perform a D2D transmission at a transmit power level defined by a power control rule.
Abstract:
A method for operating a mobile device adapted for device-to-device (D2D) communications includes determining a utilization measure for discovery resources (DRs) allocated for D2D discovery in a communications system, and sending a utilization measure report to an evolved NodeB (eNB) when a reporting criterion is satisfied, wherein the utilization measure report is configured to prompt an adjustment to a number of DRs allocated for D2D discovery when an adjustment condition is met.
Abstract:
A method for providing an extensible solution for discovery message size includes determining a capsule size at a layer one protocol of a user equipment operating in a cellular network. The capsule size is forwarded to a layer two protocol of the user equipment where it is adjusted to accommodate layer two overhead. The adjusted capsule size is then forwarded to a layer three protocol.
Abstract:
A method for signaling control information in a communications system includes identifying a first subframe to carry first control information, and determining whether the first subframe is configured as a device-to-device (D2D) subframe. The method also includes transmitting the first control information in the first subframe to an evolved NodeB (eNB) when the first subframe is not configured as a D2D subframe, wherein the first control information is encoded with a first encoding rule in accordance with a first subframe, and transmitting the first control information in a second subframe when the first subframe is configured as a D2D subframe, wherein the first control information is encoded with a second encoding rule in accordance with the second subframe.
Abstract:
System and method embodiments are provided to select and organize devices in a wireless network for allowing efficient transmission of discovery signals. In an embodiment, a network controller for grouping devices for device-to-device (D2D) discovery allocates a plurality of transmission opportunities for D2D discovery in a wireless network. Each one of the transmission opportunities defines at least one of a time slot and a frequency for transmitting a discovery subframe for D2D discovery. The network controller further groups, via signaling, a plurality of devices in the wireless network into a plurality of groups, wherein the devices in each group are in close proximity to each other. The network controller then assigns a corresponding transmission opportunity of the allocated transmission opportunities to each group.
Abstract:
Embodiments are provided for a mechanism for supporting multiple 3GPP Packet Data Network (PDN) connections over a WLAN. Multiple gateway interfaces, each corresponding to a different PDN, are established over a single connection , via the WLAN, between a UE and an access gateway. A PDN access configuration protocol (PACP) is provided to configure the association between the IP interface on the access gateway and the corresponding 3GPP PDN/APN connection, and exchange the PDN setup between the UE and the access gateway. The PACP mechanisms allow signaling APN information and associating corresponding IP context at the access gateway, setting up and tearing down connection context between the UE and PDN gateway (P-GW), and supporting session continuity when the UE moves to another access gateway. The mechanisms support using Dynamic Host Configuration Protocol (DHCP) for IPv4 and Neighbor Discovery for IPv6.