Abstract:
Embodiments are provided herein for determining a synchronizing master for device-to-device (D2D) communication in a cellular network environment. In an embodiment, a user equipment (UE) receives a discovery signal comprising a timing reference, and determines a transmitter of the discovery signal. In accordance with the determination of the transmitter of the discovery signal, the UE performs one of synchronizing to the timing reference in the discovery signal and transmitting a second discovery signal. The UE performs the synchronizing to the timing reference if the transmitter of the discovery is a cellular network. Alternatively, the UE transmits the second discovery signal upon determining that the transmitter of the discovery signal is a second UE that is out of coverage of a cellular network.
Abstract:
A transmit power control rule for device-to-device (D2D) transmissions may not be necessary during periods in which no uplink transmissions are scheduled to be received by an enhanced Node B base station (eNB). When uplink transmissions are not scheduled to be received by the eNB, the eNB may send a transmit power control (TPC) command to a D2D capable user equipment (D2D UE) that instructs the D2D UE to perform a D2D transmission at a pre-defined transmit power level (e.g., maximum transmit power level). When uplink transmissions are scheduled to be received the eNB, the eNB may send a TPC command to the D2D UE that instructs the D2D UE to perform a D2D transmission at a transmit power level defined by a power control rule.
Abstract:
A method of establishing a group trust relationship in an Internet of Things (IoT) system using a first IoT device within a group of IoT devices is provided. The method includes generating, by the first IoT device, a first set of keys corresponding to the first IoT device, deriving, by the first IoT device, a group set of keys corresponding the group of IoT devices, and discarding the first set of keys and storing the group set of keys after the first IoT device transmits data toward a base station and goes idle, wherein the group set of keys is used by each IoT device within the group of IoT devices for subsequent transmissions of data to the base station.
Abstract:
A transmit power control rule for device-to-device (D2D) transmissions may not be necessary during periods in which no uplink transmissions are scheduled to be received by an enhanced Node B base station (eNB). When uplink transmissions are not scheduled to be received by the eNB, the eNB may send a transmit power control (TPC) command to a D2D capable user equipment (D2D UE) that instructs the D2D UE to perform a D2D transmission at a pre-defined transmit power level (e.g., maximum transmit power level). When uplink transmissions are scheduled to be received the eNB, the eNB may send a TPC command to the D2D UE that instructs the D2D UE to perform a D2D transmission at a transmit power level defined by a power control rule.
Abstract:
A method for operating a device-to-device (D2D) device includes determining, by the D2D device, availability of a D2D buffer status report (BSR) resource. The method also includes in response to determining that the D2D BSR is not available, generating, by the D2D device, a D2D scheduling request (D2D-SR) message in accordance with D2D-SR configuration information and transmitting, by the D2D device, the D2D-SR message in a D2D-SR resource when the D2D-SR resource is available.
Abstract:
A method for signaling control information in a communications system includes identifying a first subframe to carry first control information, and determining whether the first subframe is configured as a device-to-device (D2D) subframe. The method also includes transmitting the first control information in the first subframe to an evolved NodeB (eNB) when the first subframe is not configured as a D2D subframe, wherein the first control information is encoded with a first encoding rule in accordance with a first subframe, and transmitting the first control information in a second subframe when the first subframe is configured as a D2D subframe, wherein the first control information is encoded with a second encoding rule in accordance with the second subframe.
Abstract:
A transmit power control rule for device-to-device (D2D) transmissions may not be necessary during periods in which no uplink transmissions are scheduled to be received by an enhanced Node B base station (eNB). When uplink transmissions are not scheduled to be received by the eNB, the eNB may send a transmit power control (TPC) command to a D2D capable user equipment (D2D UE) that instructs the D2D UE to perform a D2D transmission at a pre-defined transmit power level (e.g., maximum transmit power level). When uplink transmissions are scheduled to be received the eNB, the eNB may send a TPC command to the D2D UE that instructs the D2D UE to perform a D2D transmission at a transmit power level defined by a power control rule.
Abstract:
A device is configured to perform a method of device-to-device (D2D) communication in a wireless communication network in accordance with a Long Term Evolution (LTE) standard. The method includes entering an RRC-Idle state or an RRC-Connected state. The method also includes transmitting, in the RRC-Idle state or RRC-Connected state, a D2D discovery signal for receipt by at least one second device in the network. The method further includes receiving, in the RRC-Idle state or RRC-Connected state, at least one D2D discovery signal from the at least one second device in the network.
Abstract:
A method for operating a device-to-device (D2D) device includes determining, by the D2D device, availability of a D2D buffer status report (BSR) resource. The method also includes in response to determining that the D2D BSR is not available, generating, by the D2D device, a D2D scheduling request (D2D-SR) message in accordance with D2D-SR configuration information and transmitting, by the D2D device, the D2D-SR message in a D2D-SR resource when the D2D-SR resource is available.
Abstract:
A bearer path can be optimized following a mobile relay node (MRN) handover in order to directly re-route the bearer path from a user equipment (UE) core network to a target donor base station (DeNB). Bearer path optimization signaling includes a packet data network gateway (PGW) relocation information element (IE) indicating that a PGW of an MRN is being relocated from an initial DeNB to a target DeNB. The PGW relocation IE may be carried in a path switch request message. Bearer path optimization signaling also includes an non-access stratum (NAS) activate default enhanced packet switch (EPS) bearer context request/accept messages for activating the optimized bearer path. The NAS activate default EPS bearer request/accept messages may be communicated between the mobile relay node mobility management entity (MME) and the MRN via the target DeNB.