Electric drive system with reconfigurable machine windings

    公开(公告)号:US10917030B1

    公开(公告)日:2021-02-09

    申请号:US16570168

    申请日:2019-09-13

    Abstract: An electric drive system includes a battery pack, a power inverter module (“PIM”), an electric machine, a switching circuit, and a controller. The electric machine has three or more phase legs. The PIM has a DC-side connected to the battery pack, and an alternating current (“AC”)-side connected to the electric machine. The switching circuit includes AC switches. For each phase leg the circuit also includes three or more winding sections each electrically connectable to or disconnectable from the PIM via the AC switches. The controller commands a binary switching state of each respective AC switch based on the rotary speed to implement one of four different speed-based operating modes of the electric machine, and to thereby vary a conductive path from the PIM to the electric machine through one or more of the connected winding sections.

    Electric starter system with latch mechanism for pinion pre-engagement control

    公开(公告)号:US10895237B1

    公开(公告)日:2021-01-19

    申请号:US16511860

    申请日:2019-07-15

    Abstract: An electric starter system is disclosed for use with an engine having a flywheel. The electric starter system includes a pinion gear and a solenoid device coupled to the pinion gear. The solenoid device is movable between a pre-engaged position when the pinion gear is moved into engagement with the flywheel and a disengaged position when the pinion gear is disengaged from the flywheel. A brushless starter motor is selectively connectable to the flywheel of the engine via the pinion gear during a requested engine start event. A latch mechanism is selectively engageable with the solenoid device. The latch mechanism is moveable between a latched position in which the solenoid device is mechanically held in the pre-engaged position and an unlatched position in which the solenoid device is released for movement to the disengaged position.

    Brushless starter system with pinion pre-engagement control

    公开(公告)号:US10724491B2

    公开(公告)日:2020-07-28

    申请号:US15967918

    申请日:2018-05-01

    Abstract: An electric starter system is used with an engine. The starter system may include a solenoid device coupled to a pinion gear, a brushless starter motor connectable to the engine via the pinion gear during a requested engine start event, and a controller. In response to the start event, when the engine speed is less than a threshold speed, the controller delivers a control current to the solenoid device at a peak current level sufficient for translating the pinion gear into contact with the flywheel. The control current is reduced to a holding current level less than the peak current level after the pinion gear is engaged with the flywheel. Motor torque is commanded from the starter motor, through the pinion gear, and to the flywheel while maintaining the holding current level, and held for a duration sufficient for starting the engine.

    BATTERY PACK VOLTAGE-SWITCHING SYSTEMS AND CONTROL LOGIC FOR MULTI-PACK ELECTRIC-DRIVE MOTOR VEHICLES

    公开(公告)号:US20200235440A1

    公开(公告)日:2020-07-23

    申请号:US16251766

    申请日:2019-01-18

    Abstract: Presented are battery pack voltage-switching (“V-switch”) systems, methods for making/operating such systems, and multi-pack, electric-drive motor vehicles with battery pack V-switch capabilities. A method for controlling operation of a vehicle includes a vehicle controller receiving a voltage switch signal to change a voltage output of the vehicle's battery system. The vehicle controller determines if a speed of a traction motor is less than a calibrated base speed; if so, the controller transmits a pack isolation signal to a power inverter to electrically disconnect the traction battery packs from the traction motor. The vehicle controller determines if a bus current of a DC bus is less than a calibrated bus current threshold; if so, the controller transmits an open signal to open one or more pack contactor switches and a close signal to close one or more pack contactor switches thereby causing the vehicle battery system to output the second voltage.

    Hybrid powertrain with dual energy storage devices

    公开(公告)号:US10479220B2

    公开(公告)日:2019-11-19

    申请号:US15484537

    申请日:2017-04-11

    Abstract: A powertrain includes a motor-generator that is coupled to an engine. A starter mechanism is coupled to the engine. A first energy storage device is disposed in a parallel electrical relationship with the starter mechanism. A second energy storage device is disposed in a parallel electrical relationship with the motor-generator. The electrical circuit exhibits a first electrical resistance between the first energy storage device and the motor-generator, and a second electrical resistance between the second energy storage device and the motor-generator. The first electrical resistance is greater than the second electrical resistance so that electrical energy from the motor-generator more easily flows to the second energy storage device than the first energy storage device, and the motor-generator more easily draws electrical energy from the second energy storage device than from the first energy storage device.

    Powertrain with AC brushless starter and sensor/sensorless control method

    公开(公告)号:US10473081B1

    公开(公告)日:2019-11-12

    申请号:US15961094

    申请日:2018-04-24

    Abstract: An electric starter system includes a brushless alternating current (AC) starter motor selectively coupled to an engine and having a rotor with a rotor position. A position sensor generates measured position signals indicative of rotor position. A controller is in communication with the sensor. The controller has sensorless logic, e.g., a BEMF, inductance, or high-frequency signal injection method, for generating an estimated rotor position. The controller executes a method in which, below a threshold speed of the starter motor, the controller calibrates the sensorless logic using the measured position signals and controls a torque operation of the starter motor using the measured position signals. Above the threshold speed, the torque operation is controlled solely using the estimated rotor position. A powertrain includes the engine, a transmission, a drive shaft, and a load, along with the electric starter system.

    BRUSHLESS STARTER SYSTEM WITH PINION PRE-ENGAGEMENT CONTROL

    公开(公告)号:US20190338744A1

    公开(公告)日:2019-11-07

    申请号:US15967918

    申请日:2018-05-01

    Abstract: An electric starter system is used with an engine. The starter system may include a solenoid device coupled to a pinion gear, a brushless starter motor connectable to the engine via the pinion gear during a requested engine start event, and a controller. In response to the start event, when the engine speed is less than a threshold speed, the controller delivers a control current to the solenoid device at a peak current level sufficient for translating the pinion gear into contact with the flywheel. The control current is reduced to a holding current level less than the peak current level after the pinion gear is engaged with the flywheel. Motor torque is commanded from the starter motor, through the pinion gear, and to the flywheel while maintaining the holding current level, and held for a duration sufficient for starting the engine.

    STARTER FOR AN INTERNAL COMBUSTION ENGINE
    48.
    发明申请

    公开(公告)号:US20190338743A1

    公开(公告)日:2019-11-07

    申请号:US15967904

    申请日:2018-05-01

    Abstract: An engine starter system includes a starter including a multi-phase brushless electric motor and an electronic commutator assembly. A controller includes an instruction set that is executable in response to a command to execute an engine starting event. Operation includes determining a desired starting profile, controlling the starter to engage a rotatable member of the engine, and monitoring the rotational speed of the electric motor via a rotor position sensing circuit. The starter inverter is dynamically controlled to control the electric motor to spin the rotatable member of the internal combustion engine responsive to the desired starting profile, including dynamically controlling the starter inverter to control the electric motor to control the spin of the engine responsive to the desired starting profile to prevent occurrence of an engine speed flare event during the engine starting event.

    BUS VOLTAGE STABILIZATION IN POWERTRAIN HAVING ELECTRIC STARTER SYSTEM WITH POLYPHASE BRUSHLESS STARTER MOTOR

    公开(公告)号:US20190323472A1

    公开(公告)日:2019-10-24

    申请号:US15961128

    申请日:2018-04-24

    Abstract: An electric starter system is usable with an engine and a power inverter module (PIM), e.g., of a powertrain. The starter system includes a polyphase/AC brushless starter motor connected to the PIM via an AC voltage bus and selectively connected to the engine during a requested engine start event. A sensor on the DC voltage bus outputs a signal indicative of a voltage level of the DC voltage bus. The controller executes a method using voltage stabilization logic having a proportional-integral (PI) torque control loop. Logic execution in response to the requested engine starting event causes the controller to control the starter motor, when the bus voltage exceeds a calibrated minimum voltage, using a starting torque determined via the control loop. The commanded starting torque limits inrush current to the starter motor such that the DC voltage bus remains above the minimum voltage.

    STARTER SYSTEM AND METHOD OF CONTROL
    50.
    发明申请

    公开(公告)号:US20190323470A1

    公开(公告)日:2019-10-24

    申请号:US15961204

    申请日:2018-04-24

    Abstract: A starter system includes a brushless electric starter motor and a battery power pack, the motor operatively connectable to an internal combustion engine of a powertrain. A power inverter converts direct current provided from the battery power pack to multi-phase alternating current to drive the motor. A pinion gear with one-way clutch is rotatably driven by the motor and movable between a disengaged position and an engaged position in which the pinion gear is meshingly engaged with a ring gear operatively connected to a crankshaft of the engine. A solenoid is operatively connected to the pinion gear. An electronic control system controls the motor to crank the engine using power provided from the battery power pack, and to separately command the solenoid to a disabled or an enabled state. A method of controlling the starter system controls the motor to crank the engine in a restart following an autostop.

Patent Agency Ranking