Abstract:
An engine starter system includes a starter including a multi-phase brushless electric motor and an electronic commutator assembly. A controller includes an instruction set that is executable in response to a command to execute an engine starting event. Operation includes determining a desired starting profile, controlling the starter to engage a rotatable member of the engine, and monitoring the rotational speed of the electric motor via a rotor position sensing circuit. The starter inverter is dynamically controlled to control the electric motor to spin the rotatable member of the internal combustion engine responsive to the desired starting profile, including dynamically controlling the starter inverter to control the electric motor to control the spin of the engine responsive to the desired starting profile to prevent occurrence of an engine speed flare event during the engine starting event.
Abstract:
An engine starter system includes a starter including a multi-phase brushless electric motor and an electronic commutator assembly. A controller includes an instruction set that is executable in response to a command to execute an engine starting event. Operation includes determining a desired starting profile, controlling the starter to engage a rotatable member of the engine, and monitoring the rotational speed of the electric motor via a rotor position sensing circuit. The starter inverter is dynamically controlled to control the electric motor to spin the rotatable member of the internal combustion engine responsive to the desired starting profile, including dynamically controlling the starter inverter to control the electric motor to control the spin of the engine responsive to the desired starting profile to prevent occurrence of an engine speed flare event during the engine starting event.
Abstract:
A method of controlling a vehicle with a hybrid powertrain with an engine and a motor/generator includes monitoring net axle torque on the drive axle, monitoring vehicle deceleration rate, monitoring vehicle speed, and controlling the motor/generator to stop rotation of the engine crankshaft when the vehicle speed is non-zero and below a predetermined vehicle speed auto-stop enable threshold if torque percentage braking torque is greater than a predetermined percentage braking torque and the vehicle deceleration rate is greater than a predetermined threshold vehicle deceleration rate. A hybrid vehicle has a controller with a processor that executes a stored algorithm to carry out the method.
Abstract:
A hybrid electric powertrain includes an electric machine delivering torque to an engine in an engine start event having initial cranking and transition phases. In response to a request for an engine start event, a controller commands delivery of the motor torque to the crankshaft. In the initial cranking phase the controller regulates crankshaft acceleration from zero speed up to a target cranking speed in a closed-loop manner via a predetermined fixed profile. In the transition phase, the crankshaft accelerates from the target cranking speed to a target idle speed using a feed-forward torque value blended, using a calibration table, from a predetermined engine drag torque to a reported engine torque. In the transition phase the controller periodically adjusts a speed trajectory of the crankshaft, with the magnitude and frequency of adjustment based on combustion of the engine and calibration of the feed-forward torque.
Abstract:
A method of controlling a vehicle with a hybrid powertrain with an engine and a motor/generator includes monitoring net axle torque on the drive axle, monitoring vehicle deceleration rate, monitoring vehicle speed, and controlling the motor/generator to stop rotation of the engine crankshaft when the vehicle speed is non-zero and below a predetermined vehicle speed auto-stop enable threshold if torque percentage braking torque is greater than a predetermined percentage braking torque and the vehicle deceleration rate is greater than a predetermined threshold vehicle deceleration rate. A hybrid vehicle has a controller with a processor that executes a stored algorithm to carry out the method.
Abstract:
A hybrid electric powertrain includes an electric machine delivering torque to an engine in an engine start event having initial cranking and transition phases. In response to a request for an engine start event, a controller commands delivery of the motor torque to the crankshaft. In the initial cranking phase the controller regulates crankshaft acceleration from zero speed up to a target cranking speed in a closed-loop manner via a predetermined fixed profile. In the transition phase, the crankshaft accelerates from the target cranking speed to a target idle speed using a feed-forward torque value blended, using a calibration table, from a predetermined engine drag torque to a reported engine torque. In the transition phase the controller periodically adjusts a speed trajectory of the crankshaft, with the magnitude and frequency of adjustment based on combustion of the engine and calibration of the feed-forward torque.