Abstract:
A method and apparatus that control lateral movement of a vehicle are provided. The method includes receiving vehicle information and path information of the vehicle, determining a center of vehicle rotation from the vehicle information, minimizing a path tracking error based on the path information of the vehicle, determining a road wheel angle command or a steering torque command using non-linear optimization based on the minimized path tracking error, and controlling an actuator according to the road wheel angle command or steering torque command.
Abstract:
A method and apparatus that control lateral movement of a vehicle are provided. The method includes receiving vehicle information and path information of the vehicle, determining a center of vehicle rotation from the vehicle information, minimizing a path tracking error based on the path information of the vehicle, determining a road wheel angle command or a steering torque command using non-linear optimization based on the minimized path tracking error, and controlling an actuator according to the road wheel angle command or steering torque command.
Abstract:
Presented are automated driving systems for executing intelligent vehicle operations in mixed-mu road conditions, methods for making/using such systems, and vehicles with enhanced headway control for transitional surface friction conditions. A method for executing an automated driving operation includes a vehicle controller receiving sensor signals indicative of road surface conditions of adjoining road segments, and determining, based on these sensor signals, road friction values for the road segments. The controller determines whether the road friction value is increasing or decreasing, and if a difference between the road friction values is greater than a calibrated minimum differential. Responsive to the friction difference being greater than the calibrated minimum differential and the road friction value decreasing, the vehicle controller executes a first vehicle control action. Conversely, if the friction difference is greater than the calibrated minimum but the road friction value is increasing, the controller responsively executes a second vehicle control action.
Abstract:
Methods and systems are provided for an improved system and method for validating vehicle lateral velocity estimation. The provided system and method employ an efficient validation algorithm to detect lateral velocity estimation faults. The method and system are robust to road uncertainties and do not require redundant estimations or measurements. The provided system and method offer a technological solution for real time validation of lateral velocity estimation using already existing vehicle sensors, and are independent of (i) road condition information, (ii) wheel torque information, (iii) tire model information, and (iv) tire wear information.
Abstract:
A method of adaptively re-generating a planned path for an autonomous driving maneuver. An object map is generated based on the sensed objects in a road of travel. A timer re-set and actuated. A planned path is generated for autonomously maneuvering the vehicle around the sensed objects. The vehicle is autonomously maneuvered along the planned path. The object map is updated based on sensed data from the vehicle-based devices. A safety check is performed for determining whether the planned path is feasible based on the updated object map. The planned path is re-generated in response to a determination that the existing path is infeasible, otherwise a determination is made as to whether the timer has expired. If the timer has not expired, then a safety check is re-performed; otherwise, a return is made to re-plan the path.
Abstract:
A reduced-order fail-safe inertial measurement unit system. A first inertial measurement unit device includes a plurality of accelerometers measuring linear accelerations and gyroscopes measuring angular velocities. A second inertial measurement unit device includes a reduced number of accelerometers and gyroscopes relative to the first inertial measurement unit device measuring at least two linear accelerations and at least one angular velocity. A processor receives acceleration data from the first and second inertial measurement units. The processor detects faulty data measurements from the first inertial measurement unit. The processor supplements the faulty data measurements of the first inertial measurement unit with transformed data generated as a function of the measurement data from the second inertial measurement unit. The processor applies predetermined transformation solutions to transform the measurement data from the second inertial measurement unit into the transformed data. The processing unit provides the transformed data to the safety applications of the vehicle.
Abstract:
A system for use at a vehicle to estimate vehicle pitch angle and road grade angle, in real time and generally simultaneously. The system includes a sensor configured to measure vehicle pitch rate, a processor, and a computer-readable medium. The medium includes computer-executable instructions that, when executed by the processor, cause the processor to perform operations comprising estimating, using an observer and the vehicle pitch rate measured by the sensor, an estimated vehicle pitch rate. The operations further comprise estimating, using an observer and the measured vehicle pitch rate, the vehicle pitch angle, and estimating, based on the estimated vehicle pitch rate and the vehicle pitch angle estimated, the road grade angle.
Abstract:
A system, for use at a vehicle to estimate vehicle roll angle and road bank angle, in real time and generally simultaneously. The system includes a sensor configured to measure vehicle roll rate, a processor; and a computer-readable medium. The medium includes instructions that, when executed by the processor, cause the processor to perform operations comprising estimating, using an observer and the vehicle roll rate measured by the sensor, a vehicle roll rate. The operations also include estimating, using an observer and a measured vehicle roll rate, the vehicle roll angle, and estimating, based on the vehicle roll rate estimated and the vehicle roll angle estimated, the road bank angle.
Abstract:
A system and method for generating an overlay torque command for an electric motor in an EPS system for use in a collision avoidance system. The method uses model predictive control that employs a six-dimensional vehicle motion model including a combination of a one-track linear bicycle model and a one-degree of freedom steering column model to model the vehicle steering. The method determines a steering control goal that defines a path tracking error between the current vehicle path and the desired vehicle path through a cost function that includes an optimal total steering torque command. The MPC determines the optimal total steering torque command to minimize the path error, and then uses driver input torque, EPS assist torque and the total column torque command to determine the torque overlay command.
Abstract:
A system and method for calculating a virtual target path that is used to calculate an evasive steering path around a target object, such as a target vehicle, stopped in front of a subject vehicle. The method includes determining a potential field using a plurality of scan points that is a summation of two-dimensional Gaussian functions, where each Gaussian function has center defined by target object scan points and other object scan points. The method identifies a mesh grid in an X-Y plane where the mesh grid includes mesh grid points at locations where X and Y plane lines cross. The method identifies a local minimum point of the potential field for each X-plane line at each mesh grid point along the Y-plane crossing that X-plane line, where the local minimum point is a curve point. The method then connects the curve points to define the target path.