Abstract:
Methods and systems for allocating tasks to robotic devices are provided. An example method includes receiving information associated with task logs for a plurality of robotic devices and in a computing system configured to access a processor and memory, determining information associated with a health level for the plurality of robotic devices based on the information associated with the task logs. A health level for a given robotic device may be proportional to a current level of ability to perform a function, which may change over a lifespan of the given robotic device. Information associated with a plurality of tasks to be performed by one or more or the robotic devices may also be determined. The computing system may optimize an allocation of the plurality of tasks such that a high precision task may be allocated to a robotic device having a greater current health level than another robotic device.
Abstract:
Methods and systems for allocating tasks to robotic devices are provided. An example method includes receiving information associated with task logs for a plurality of robotic devices and in a computing system configured to access a processor and memory, determining information associated with a health level for the plurality of robotic devices based on the information associated with the task logs. A health level for a given robotic device may be proportional to a current level of ability to perform a function, which may change over a lifespan of the given robotic device. Information associated with a plurality of tasks to be performed by one or more or the robotic devices may also be determined. The computing system may optimize an allocation of the plurality of tasks such that a high precision task may be allocated to a robotic device having a greater current health level than another robotic device.
Abstract:
A method includes receiving first sensor data acquired by a first sensor in communication with a cloud computing system. The first sensor data has a first set of associated attributes including a time and a location at which the first sensor data was acquired. The method also includes receiving second sensor data acquired by a second sensor in communication with the cloud computing system. The second data has a second set of associated attributes including a time and a location at which the second sensor data was acquire. Further, the method includes generating a data processing result based at least in part on the first sensor data, the first set of associated attributes, the second sensor data, and the second set of associated attributes and instructing a robot in communication with the cloud computing system to perform a task based at least in part on the data processing result.
Abstract:
Techniques for identifying groups of features in an online geographic view of a real property and replacing and/or augmenting the groups of features with advertisement information are described. The techniques include providing a geographic view of a property within an online property management system, identifying a region of interest in the geographic view, analyzing the geographic view to locate one or more promotional features within the geographic view positioned upon a real property region, providing a user-selectable link associated with the region of interest in the geographic view, receiving a request for the region of interest in the geographic view via the user-selectable link, receiving data to alter at least one of the behavior or the appearance of the region of interest, storing the data in association with the geographic view, and updating the region of interest within the geographic view based upon the received data.
Abstract:
According to a general aspect, a method can include receiving a request, triggered via a consumer account, to access, using a social media application, a plurality of sharer content. The sharer content can be associated with a sharer account using the social media application. The method can include retrieving, in response to the request, a consumer value and a relationship value. The consumer value can represent an interaction with the social media application via the consumer account and the relationship value can characterize a relationship between a consumer identifier of the consumer account and a sharer identifier of the sharer account. The method can include selecting a subset of sharer content from the plurality of sharer content based on a combination of the consumer value and the relationship value, and can include defining a portion of a presentation customized for the consumer account using the selected subset of sharer content.
Abstract:
Methods and systems for determining a status of a component of a device are provided. An example method includes triggering an action of a component of a device, and responsively receiving information associated with the action of the component from a sensor. The method further includes a computing system having a processor and a memory comparing the information with calibration data and determining a status of the component based on the comparison. In some examples, the calibration data may include information derived from data received from a pool of one or more devices utilizing same or similar components as the component. The determined status may include information associated with a performance of the component with respect to performances of same or similar components of the pool of devices. In one example, the device may self-calibrate the component based on the status.
Abstract:
Methods and systems for allocating tasks to robotic devices are provided. An example method includes receiving information associated with task logs for a plurality of robotic devices and in a computing system configured to access a processor and memory, determining information associated with a health level for the plurality of robotic devices based on the information associated with the task logs. A health level for a given robotic device may be proportional to a current level of ability to perform a function, which may change over a lifespan of the given robotic device. Information associated with a plurality of tasks to be performed by one or more or the robotic devices may also be determined. According to the method, the computing system may optimize an allocation of the plurality of tasks such that a high precision task may be allocated to a robotic device having a greater current health level than another robotic device.
Abstract:
A method includes receiving first sensor data acquired by a first sensor in communication with a cloud computing system. The first sensor data has a first set of associated attributes including a time and a location at which the first sensor data was acquired. The method also includes receiving second sensor data acquired by a second sensor in communication with the cloud computing system. The second data has a second set of associated attributes including a time and a location at which the second sensor data was acquire. Further, the method includes generating a data processing result based at least in part on the first sensor data, the first set of associated attributes, the second sensor data, and the second set of associated attributes and instructing a robot in communication with the cloud computing system to perform a task based at least in part on the data processing result.
Abstract:
Methods and systems for interacting with multiple three-dimensional (3D) object data models are provided. An example method may involve providing to a display device for display a first 3D object data model and a second 3D object data model. Information associated with a modification to the first 3D object data model may be received. Based on the received information, a same change may be applied to the first 3D object data model and applied to the second 3D object data model to obtain a first modified 3D object data model and a second modified 3D object data model. According to the method, the first modified 3D object data model and the second modified 3D object data model may be provided to the display device for substantially simultaneous display.
Abstract:
Methods and systems for encoding and compressing 3D object data models are provided. An example method may involve receiving 3D mesh data for an object that includes geometry coordinates for a surface of the object. Additionally, material properties may be associated with the geometry coordinates. The method may also include identifying multiple portions of the mesh data based on the material properties associated with the geometry coordinates. For example, a given group of adjacent geometry coordinates having common material properties may be identified as a given portion. For at least some of the identified portions of the mesh data, the method may further include encoding information related to an identified portion of the mesh data and compressing the encoded information into a file of compressed geometric data.