Abstract:
The present disclosure is directed to a method for assembling a modular rotor blade of a wind turbine. The method includes providing a pre-formed blade root section and a pre-formed blade tip section of the rotor blade. Further, the blade root section includes one or more spar caps extending in a generally span-wise direction. Another step includes providing at least one pre-formed blade segment of the rotor blade. The method also includes mounting the at least one blade segment around the one or more spar caps of the blade root section, wherein the at least one blade segment includes a chord-wise cross-section having multiple joints, wherein at least one joint is located on at least one of a pressure side surface or a suction side surface. In addition, the method also includes joining the blade tip section to at least one of the one or more spar caps or the at least one blade segment.
Abstract:
Methods of manufacturing rotor blade components for a wind turbine and rotor blade components produced in accordance with such methods are disclosed. In one embodiment, the method generally includes heating first and second sheets of thermoplastic material to a forming temperature; placing the first sheet of thermoplastic material within a first half of a thermoforming mold and the second sheet of thermoplastic material in an opposite, second half of the thermoforming mold; forming the first sheet of thermoplastic material to the first half of the thermoforming mold; forming the second sheet of thermoplastic material to the second half of the thermoforming mold; compressing the first and second halves of the thermoforming mold so as to join at least a portion of the first and second sheets together; and, releasing the joined first and second sheets of thermoplastic material from the thermoforming mold so as to form the rotor blade component.
Abstract:
Methods of manufacturing rotor blade components for a wind turbine and rotor blade components produced in accordance with such methods are disclosed. In one embodiment, the method generally includes providing a mold of the rotor blade component; coating at least a portion of an interior surface of the mold with an elastomeric material; inserting impletion material within the mold so as to at least partially reduce an open internal volume within the mold; inserting a foam material within the mold; and, removing the rotor blade component from the mold, wherein the elastomeric material forms a cover skin around at least a portion of the rotor blade component. In an alternative embodiment, the method includes providing at least one support member defining a profile for the rotor blade component on a mold surface; coating at least a portion of the support member with an elastomeric material; and, allowing the elastomeric material to cure on the mold surface so as to form the rotor blade component.
Abstract:
A method of manufacturing a tower structure includes printing and depositing, via a printhead assembly of an additive printing system, one or more printed layers of a wall of the tower structure. The method also includes unwinding at least one continuous roll of a reinforcement material to form at least one continuous reinforcement ring member layer, the reinforcement material comprising a pultruded polymer material. Further, the method includes placing the at least one continuous reinforcement ring member layer atop the one or more printed layers of the wall of the tower structure. Moreover, the method includes printing and depositing, via the printhead assembly of the additive printing system, one or more additional printed layers of the wall of the tower structure atop the at least one continuous reinforcement ring member layer.
Abstract:
A system for manufacturing a tower structure of a wind turbine includes an additive printing device having a central frame structure with a platform and an arm member. The arm member is generally parallel to a longitudinal axis of the tower structure. The additive printing device also includes a plurality of robotic arms secured to the arm member of the central frame structure. Each of the robotic arms includes a printer head for additively printing one or more materials. The additive printing device further includes at least one nozzle configured for dispensing a cementitious material. Moreover, the system includes one or more molds additively printed via the additive printing device of a polymer material. As such, the mold(s) define inner and outer wall limits of the tower structure. After the mold(s) are printed and solidified, at least one of the printer heads or the nozzle of the additive printing device is configured to dispense the cementitious material between the inner and outer wall limits of the tower structure.
Abstract:
An additive printing device and a method for using the same to manufacture a tower structure of a wind turbine is provided. The additive printing device includes a vertical support structure, a support ring suspended from the vertical support structure, and a printer head movably coupled to the support ring for selectively depositing cementitious material. A drive mechanism, such as a rack and pinion, moves the printer head around the support ring while selectively depositing cementitious material. The vertical support structure may be raised and/or the relative position between the vertical support structure and the printer head may be adjusted to raise the printer head to print subsequent layers. This process may be repeated to print the tower structure layer-by-layer from the ground up.
Abstract:
A method of joining first and second blade components of a rotor blade of a wind turbine includes providing corresponding first and second positioning elements at an interface of the first and second blade components. The method also includes aligning and securing the first positioning element of the first blade component with the second positioning element of the second blade component so as to temporarily secure the first and second blade components together. Further, the corresponding first and second positioning elements maintain a desired spacing between the first and second blade components. Moreover, the method includes permanently securing the first and second blade components together such that the desired spacing is maintained between the first and second blade components.
Abstract:
An additive printing device and a method for using the same to manufacture a tower structure of a wind turbine is provided. The additive printing device includes a vertical support structure, a support ring suspended from the vertical support structure, and a printer head movably coupled to the support ring for selectively depositing cementitious material. A drive mechanism, such as a rack and pinion, moves the printer head around the support ring while selectively depositing cementitious material. The vertical support structure may be raised and/or the relative position between the vertical support structure and the printer head may be adjusted to raise the printer head to print subsequent layers. This process may be repeated to print the tower structure layer-by-layer from the ground up.
Abstract:
A rotor blade segment of a wind turbine includes a seamless leading edge surface. A method of manufacturing a rotor blade segment of a wind turbine, the rotor blade segment having a seamless leading edge surface, includes forming an outer skin of the rotor blade segment. The outer skin defines a continuous outer surface. The continuous outer surface includes a pressure side surface extending between a pressure side aft edge and a pressure side forward edge, a suction side surface extending between a suction side forward edge and a suction side aft edge, and the seamless leading edge surface extends between the pressure side forward edge and the suction side forward edge. After folding the outer skin, the pressure side surface is positioned opposite the suction side surface and the pressure side aft edge is proximate the suction side aft edge.
Abstract:
Rotor blade assemblies for wind turbines are provided. A rotor blade assembly includes a rotor blade. In some embodiments, the rotor blade assembly further includes a surface feature configured on an exterior surface of the rotor blade, the surface feature having an exterior mounting surface. At least a portion of the exterior mounting surface has a contour in an uninstalled state that is different from a curvature of the exterior surface of the rotor blade at a mount location of the surface feature on the rotor blade. In other embodiments, the rotor blade assembly further includes a seal member surrounding at least a portion of a perimeter of the surface feature. The seal member contacts and provides a transition between the exterior surface and the surface feature.