MLCC FILTER ON AN AIMD CIRCUIT BOARD CONDUCTIVELY CONNECTED TO A GROUND PIN ATTACHED TO A HERMETIC FEEDTHROUGH FERRULE

    公开(公告)号:US20190321628A1

    公开(公告)日:2019-10-24

    申请号:US16452785

    申请日:2019-06-26

    Abstract: An EMI/energy dissipating filter for an active implantable medical device (AIMD) is described. The filter comprises a first gold braze hermetically sealing the insulator to a ferrule that is configured to be mounted in an opening in a housing for the AIMD. A lead wire is hermetically sealed in a passageway through the insulator by a second gold braze. A circuit board substrate is disposed adjacent the insulator. A two-terminal chip capacitor disposed adjacent to the circuit board has an active metallization that is electrically connected to the active electrode plates and a ground metallization that is electrically connected to the ground electrode plates of the capacitor. A ground electrical path extends from the ground metallization of the chip capacitor to the ferrule. A conductive ground pin is electrically and mechanically connected to the ferrule. The ground path comprises an internal ground plate disposed within the circuit board substrate. The internal ground plate is electrically connected to the ground metallization of the chip capacitor and to either the ferrule or the ground pin connected to the ferrule. An active electrical path extends between the active metallization of the chip capacitor and the lead wire.

    LOW EQUIVALENT SERIES RESISTANCE RF FILTER FOR AN ACTIVE IMPLANTABLE MEDICAL DEVICE

    公开(公告)号:US20190001123A1

    公开(公告)日:2019-01-03

    申请号:US16121716

    申请日:2018-09-05

    Abstract: A hermetically sealed filtered feedthrough assembly includes an electrically conductive ferrule sealed by a first gold braze to an insulator disposed at least partially within a ferrule opening. A conductive wire is disposed within a via hole disposed through the insulator extending from a body fluid side to a device side. A second gold braze hermetically seals the conductive leadwire to the via hole. A capacitor is disposed on the device side having a capacitor dielectric body with a dielectric constant k that is greater than 0 and less than 1000. The capacitor is the first filter capacitor electrically connected to the conductive leadwire coming from the body fluid side into the device side. An active electrical connection electrically connects the conductive leadwire to the capacitor active metallization. A ground electrical connection electrically connects the capacitor ground metallization to the ferrule and housing of the active implantable medical device.

    MLCC filter on an AIMD circuit board with conductive ground pin attached to a hermetic feedthrough ferrule

    公开(公告)号:US10124164B2

    公开(公告)日:2018-11-13

    申请号:US15651045

    申请日:2017-07-17

    Abstract: An EMI/energy dissipating filter for an active implantable medical device (AIMD) is described. The filter comprises a first gold braze hermetically sealing the insulator to a ferrule that is configured to be mounted in an opening in a housing for the AIMD. A lead wire is hermetically sealed in a passageway through the insulator by a second gold braze. A circuit board substrate is disposed adjacent the insulator. A two-terminal chip capacitor disposed adjacent to the circuit board has an active end metallization that is electrically connected to the active electrode plates and a ground end metallization that is electrically connected to the at least one ground electrode plates of the capacitor. A ground path electrically extends between the ground end metallization of the chip capacitor and the ferrule. The ground path comprises a conductive pin electrically and mechanically connected to the ferrule by a third gold braze. The ground path comprises an internal ground plate disposed within the circuit board substrate, and the internal ground plate is electrically connected to both the conductive pin and the ground end metallization of the chip capacitor. An active path electrically extends between the active end metallization of the chip capacitor and the lead wire.

Patent Agency Ranking