摘要:
A multilayer ceramic capacitor includes a body in which a plurality of dielectric layers are stacked, first and second external electrodes disposed on one surface of the body and spaced apart from each other, a plurality of first and second internal electrodes opposing each other, the dielectric layers being interposed therebetween, a first conductive via connecting the plurality of first internal electrodes to the first external electrode, a second conductive via connecting the plurality of second internal electrodes to the second external electrode, and a shielding layer covering at least a portion of an external surface of the body.
摘要:
Supercapacitor structures are provided which include, for example: one or more layers of supercapacitors; and one or more contact tabs. The one or more contact tabs electrically contact and extend outward from the supercapacitor structure to facilitate electrical connection to the supercapacitor structure, and the one or more contact tabs include a multi-contact tab. The multi-contact tab is configured and sized with multiple contact locations which are disposed external to the supercapacitor structure. Various supercapacitor structures are provided, including one supercapacitor structure with a shared C-shaped current collector, and another supercapacitor structure with stacked supercapacitors. One or more additional multi-contact tabs may also extend from the supercapacitor structure(s) and distribute the same or a different capacitor voltage than the multi-contact tab.
摘要:
A film comprises a phthalimidine copolycarbonate comprising first repeating units and second repeating units different from the first repeating units, wherein the first repeating units are phthalimidine carbonate units and the second repeating units comprise bisphenol carbonate units that are not the same as the first repeating phthalimidine carbonate units; and a second polycarbonate that is not a phthalimidine copolycarbonate; wherein the film has: a glass transmission temperature of greater than 170° C.; a dielectric constant at 1 kHz, 23° C. and 50% relative humidity of at least 3.0; a dissipation factor at 1 kHz, 23° C. and 50% relative humidity of 1% or less; and a breakdown strength of at least 800 Volt/micrometer.
摘要:
A composite electronic component may include a composite body including a capacitor and an inductor coupled to each other; an input terminal formed on a first end surface of the composite body and connected to the coil part of the inductor; an output terminal including a first output terminal formed on a second end surface of the composite body and connected to the coil part of the inductor and a second output terminal formed on the second end surface of the composite body and connected to the first internal electrode of the capacitor; and a ground terminal formed on a first end surface of the capacitor in the composite body. The capacitor may be coupled to a side surface of the inductor, and the sum of ratio of lengths of a short axis to a long axis of the coil part is 0.7 to 1.0.
摘要:
This disclosure describes methods and systems for minimizing electromagnetic interference (EMI) noise emanating from a ceramic capacitor. The ceramic capacitor may include several terminations are on a bottom portion of the capacitor. The capacitor may be designed to include several capacitors formed from electrode layers. The capacitor may include a conductive coating on an outer peripheral portion. The coating may include conductive materials such as Cu, Ni, Ag, and/or graphite. Alternatively, some regions of the capacitor may include electrode layers built into the capacitor that are not associated with capacitors. In this manner, the ceramic capacitor may be free of the conductive coating to locations proximate to the described electrode layers not associated with capacitors. The conductive coating can act as an electromagnetic shielding to prevent the EMI noise from emanating outside the electromagnetic shielding. Also, the conductive coating can be electrically grounded (e.g., to printed circuit board) via terminals.
摘要:
A multilayer capacitor that can suppress electrostrictive vibration without material constraint and with applicability to various structures, including general-purpose structures. A multilayer capacitor has: an element body formed of dielectric ceramic; and a plurality of internal electrodes disposed inside the element body such that the internal electrodes are stacked with ceramic layers sandwiched therebetween. The multilayer capacitor is provided with a capacitor area which includes the plurality of internal electrodes and a first suppression area and a second suppression area for reducing electrostriction caused by the plurality of internal electrodes so as to suppress noise. The first suppression area is adjacent to the capacitor area and the thickness of the second suppression area is determined according to the arrangement of the plurality of internal electrodes.
摘要:
In a shielding configuration of a chip part, a shielding effect and a cooling effect are sufficiently obtained at the same time. In an electronic device including a chip part to be disclosed, a shielding conductor 3 includes a ceiling plate section 4 covering the chip part 1 and side plate sections 5 which are formed to be united with the ceiling plate section 4 and to be at a position lower than the ceiling plate section 4 and which are arranged on both sides in a horizontal direction of the chip part 1, and openings 8 are formed in both side ends in a front-rear direction of the shielding conductor 3 to open both sides in a front-rear direction of the chip part 1, and the side plate sections 5 of the shielding conductor 3 are electrically connected via a plurality of shielding bumps 17 in the front-rear direction to a ground layer pattern 11 of a mounting substrate 10.
摘要:
A method of designing a .pi. type LC filter includes laminating dielectric layers on top and bottom sections of a magnetic material layer, forming a first external electrode and a second external electrode on each end of the laminated body, forming a third external electrode at a center section of the laminated body, forming an inductor by at least one conductor line within the magnetic material layer, connecting one end of the conductor line to the first external electrode and the other end thereof to the second external electrode, and forming a first capacitor composed of a parallel capacitor electrode within the top dielectric layer. One of the parallel capacitor electrodes is connected to the first external electrode and the other is connected to the third external electrode. Additionally, a second capacitor is formed composed of a pair of parallel capacitor electrodes within the bottom dielectric layer. One of the parallel capacitor electrodes is connected to the second external electrode and the other to the third external electrode. The .pi. type LC filter is mounted on a substrate having at least three electrodes wherein first and second lead inductance components L.sub.1 and L.sub.2 are formed. The external electrodes and capacitor electrodes are shaped and sized such that a ratio .alpha. (L.sub.1 /L.sub.2 or L.sub.2 /L.sub.1) is greater than or equal to 1.2 and less than or equal to 2.3.
摘要:
The invention relates to a novel electric capacitor for the attainment of very high voltages and for the storage of electric energy, comprising of two concentric coaxial toroidal conductors with the inner conductor levitated, an external magnetic field coil, a thermionic cathode emitting electrons, a levitated guide electrode and a discharge tube. The stored energy can thereby be delivered in form of atomic particle beams or electromagnetic waves especially electron beams in very short times and thus with very high power. Applications are: (1) the initiation of nuclear reactions, especially thermonuclear reactions, (2) the collective acceleration of electrically charged atomic particles to very high energies, (3) Gamma-ray flash tubes, (4) the pumping of lasers, (5) micro wave pulse generators and (6) the use of the thusly generated radiation for medical purposes.
摘要:
Capacitor devices with electrodes that are geometrically arranged to reduce parasitic capacitances are described. The capacitors may be multilayer ceramic capacitor (MLCC) structures in which certain electrodes may have a clearance from a capacitor structure wall, such as top wall. In circuits and devices where that particular capacitor wall may be placed near a shielding structure, the clearance may reduce unintended parasitic capacitances between the shield structure and the electrodes. As a result, the shield structures may be placed closer to the electronic components, which may allow circuit boards and electronic devices with a lower profile.