Abstract:
During drilling operations various drilling mud properties may be measured and predicted. Uncertainties in the measured or predicted values may also be calculated. The estimated uncertainties may then be used to optimize mud sampling interval and/or control a mud mixer. A decision making algorithm may be performed to optimize a surface mud sampling interval such that the uncertainties are maintained within a bounded region with minimal number of sampling times.
Abstract:
Techniques for controlling a bottom hole assembly (BHA) include determining a model of BHA dynamics based on sensor measurements from the BHA; determining, based on the model of BHA dynamics, an objective function including a predicted future deviation from a planned wellbore path; determining a control input to the BHA that satisfies the objective function for a set of operating conditions of the BHA; generating, at a secondary system, relational information that relates the control input to the set of operating conditions; and transmitting the relational information from the secondary system to the BHA.
Abstract:
A fluid discrimination system can include a fluid discriminator which selects through which of multiple outlet flow paths a fluid composition flows, the selection being based on a direction of flow of the fluid composition through the discriminator, and the direction being dependent on a fluid type in the fluid composition. Another fluid discriminator can include a structure which displaces in response to a fluid composition flow, whereby an outlet flow path of the fluid composition changes in response to a change in a ratio of fluids in the fluid composition. A method of discriminating between fluids can include providing a fluid discriminator which selects through which of multiple outlet flow paths a fluid composition flows in the well, the selection being based on a direction of flow of the fluid composition through the discriminator, and the direction being dependent on a ratio of the fluids in the fluid composition.
Abstract:
A system for variably resisting flow of a fluid composition can include a flow passage and a set of one or more branch passages which intersect the flow passage, whereby a proportion of the composition diverted from the passage to the set of branch passages varies based on at least one of a) viscosity of the fluid composition, and b) velocity of the fluid composition in the flow passage. Another variable flow resistance system can include a flow path selection device that selects which of multiple flow paths a majority of fluid flows through from the device, based on a ratio of desired fluid to undesired fluid in the composition. Yet another variable flow resistance system can include a flow chamber, with a majority of the composition entering the chamber in a direction which changes based on a ratio of desired fluid to undesired fluid in the composition.
Abstract:
In some embodiments, a method includes operating a mud circulation system having drilling mud flowing therethrough and performing a plurality of measurements from a plurality of sensors coupled to the mud circulation system. The method includes modeling, in real-time, drilling mud flow dynamics using a mathematical dynamics model and predicting physical states of the drilling mud with the mathematical dynamics model. Further, the method described herein includes inputting the measurements into the mathematical dynamics model and adapting the mathematical dynamics model based, at least in part, on discrepancies between the model physical state predictions and the measurements. The method further includes changing an operational parameter of the mud circulation system based on at least one value derived from the adapted mathematics dynamics model.
Abstract:
A system that includes a drillstring with a bottomhole assembly (BHA). The system also includes at least one stabilizer or reamer integrated with the BHA, wherein each of the at least one stabilizer or reamer includes a position adjustment assembly. The system also includes a processing unit that provides control signals to each position adjustment assembly, wherein the control signals are based on a cost function.
Abstract:
A method of evaluating a subterranean formation includes conveying a tool along a borehole. The tool includes a transmitter that transmits a drive pulse and a receiver that receives at least one formation response to the drive pulse. The method further includes calculating a signal-to-noise ratio of the at least one formation response and comparing the signal-to-noise ratio to a programmable threshold. The method further includes determining, based on the comparing, an adjusted drive pulse to transmit and transmitting the adjusted drive pulse. The method further includes and receiving at least one formation response to the adjusted drive pulse and deriving formation data from the at least one formation response to the adjusted drive pulse. The method further includes displaying a representation of the formation based on the formation data.
Abstract:
Disclosed embodiments include systems and methods for estimating real-time bit forces experienced on a drill bit and decoupling bit force disturbances. Real-time bit forces can be estimated based on bit force observers using measurements from downhole sensor subs. Model-based observers that adopted to estimate the bit force from downhole sensor sub measurements. Strain and torque measurements as measured by the sensor subs are used to estimate bit force and bit torque. These measurements can be observed using an effective observer design with the estimated bit force and bit torque based on sensor sub measurements to track the real bit force and bit torque. Observations of estimated bit forces and identified bit force disturbances can be used perform drilling dynamics modeling and identify the occurrence of negative drilling events.
Abstract:
A system including a plurality of subsystems each of which includes a subsystem controller coupled with a sensor configured to obtain a measurement, an actuator, and a subsystem processor. The subsystem processor includes a first memory storing instructions to identify a subsystem state and generate a subsystem performance objective based on the subsystem state. The system also includes a global processor coupled with each of the subsystems, the global processor includes a second memory storing instructions to identify a global system state based on the subsystem state of each subsystem, generate a global performance objective, calculate an updated performance objective for each subsystem, and transmit the updated performance objective to each subsystem. Once received, the subsystem controller in each subsystem activates the actuator to adjust a subsystem parameter to meet the updated performance objective.
Abstract:
A drilling apparatus including plurality of subsystems, each subsystem includes a subsystem controller, one or more sensors, and one or more actuators. Each subsystem controller is configured to determine a local subsystem state from measurements received from the one or more sensors and further configured to receive global state estimates and updated control strategies. Each subsystem controller is configured to send command signals to one or more actuators based at least in part on the local subsystem state, global state estimates, and updated control strategy. A method and system for coordinating the control of a plurality of drilling subsystems during drilling operations is provided. A method of drilling subsystem controller decision-making based on a co-player inference playing strategy is further provided.